39. Askey-Wilson Polynomials and the Quantum Group $\mathrm{SU}_{q}(2)$

By Masatoshi Noumi*) and Katsuhisa Mimachi**)
(Communicated by Shokichi Iyanaga, M. J. A., June 12, 1990)

The Askey-Wilson polynomials are a 4-parameter family of q-orthogonal polynomials expressed by the basic hypergeometric series ${ }_{4} \varphi_{3}$. As special cases, it provides various types of q-Jacobi polynomials such as little, big and continuous q-Jacobi polynomials. In this note, we report that a (partially discrete) 4-parameter family of Askey-Wilson polynomials is realized as "doubly associated spherical functions" on the quantum group $S U_{q}(2)$.

In [2], Koornwinder realized a 2-parameter subfamily of Askey-Wilson polynomials as zonal spherical functions on $S U_{q}(2)$ in an infinitesimal sense. Generalizing his arguments to non-zonal cases, we obtain a 4-parameter family of Askey-Wilson polynomials that are connected to these polynomials as Jacobi polynomials are to Legendre polynomials in the $S U(2)$ case. From this interpretation, we also derive an addition formula for Koornwinder's 2-parameter extension of the continuous q-Legendre polynomials. Details will be given elsewhere.

1. Throughout this note, we fix a real number q with $0<q<1$. The algebra of functions $A(G)$ on the quantum group $G=S U_{q}(2)$ is the C-algebra generated by x, u, v, y with fundamental relations

$$
\left\{\begin{array}{l}
q x u=u x, q x v=v x, q u y=y u, q v y=y v \tag{1.1}\\
u v=v u, x y-q^{-1} u v=y x-q v u=1
\end{array}\right.
$$

and the ${ }^{*}$-structure determined by $x^{*}=y$ and $v^{*}=-q u$. The quantized universal enveloping algebra $U_{q}(s u(2))$ is the C-algebra generated by k, k^{-1}, e, f with relations

$$
\left\{\begin{array}{l}
k k^{-1}=k^{-1} k=1, k e k^{-1}=q e, k f k^{-1}=q^{-1} f, \tag{1.2}\\
e f-f e=\left(k^{2}-k^{-2}\right) /\left(q-q^{-1}\right),
\end{array}\right.
$$

and the ${ }^{*}$-structure with $k^{*}=k$ and $e^{*}=f$. As for the Hopf algebra structure, we take the coproduct determined by

$$
\Delta(k)=k \otimes k, \quad \Delta(e)=k^{-1} \otimes e+e \otimes k, \quad \Delta(f)=k^{-1} \otimes f+f \otimes k
$$

The algebra of functions $A(G)$ has a natural structure of two-sided $U_{q}(s u(2))$ module. For each $j \in(1 / 2) N$, there exists a unique $2 j+1$ dimensional irreducible representation of G of highest weight q^{j} with respect to $k \in U_{q}(s u(2))$. By V, we denote the corresponding right $A(G)$-comodule with coaction R : $V_{j} \rightarrow V_{j} \otimes A(G)$. We fix a C-basis $\left(v_{m}^{j}\right)_{m \in I j}$ for V_{j}, with $I_{j}=\{j, j-1, \cdots,-j\}$, such that the differential representation takes the form
*) Department of Mathematics, College of Arts and Sciences, University of Tokyo.
**) Department of Mathematics, Nagoya University.

$$
\left\{\begin{array}{l}
k . v_{m}^{j}=v_{m}^{j} q^{m} \tag{1.3}\\
e . v_{m}^{j}=v_{m+1}^{j}([j-m][j+1+m])^{1 / 2}, \\
f . v_{m}^{j}=v_{m-1}^{j}([j+m][j+1-m])^{1 / 2},
\end{array}\right.
$$

where $[m]=\left(q^{m}-q^{-m}\right) /\left(q-q^{-1}\right)$. This representation is unitary with respect to the Hermitian form \langle,$\rangle on V_{j}$ such that $\left\langle v_{m}^{j}, v_{n}^{j}\right\rangle=\delta_{m n}\left(m, n \in I_{j}\right)$ and the *-operation of $U_{q}(s u(2))$. See also [3].
2. For each matrix

$$
g=\left[\begin{array}{ll}
\alpha & \beta \tag{2.1}\\
\gamma & \delta
\end{array}\right] \in G L(2 ; C)
$$

we define the twisted primitive element $\theta(g) \in U_{q}(s u(2))$ by

$$
\begin{equation*}
\theta(g)=-\alpha \beta q^{-1 / 2} e+(\alpha \delta+\beta \gamma)\left(k-k^{-1}\right) /\left(q-q^{-1}\right)+\gamma \delta q^{1 / 2} f \tag{2.2}
\end{equation*}
$$

When $q \rightarrow 1$, the element $\theta(g)$ corresponds to a generator of the Lie algebra of the subgroup $K(g):=g K g^{-1}$ of $S U(2)$, where K is the diagonal subgroup of $S U(2)$.

Theorem 1. Let g be a matrix of the form (2.1) and assume that

$$
\alpha \delta-q^{2 k} \beta \gamma \neq 0 \quad \text { for all } k \in \boldsymbol{Z}
$$

For each $m \in(1 / 2) Z$, set

$$
\begin{equation*}
\lambda_{m}(g)=\left(q^{m} \alpha \delta-q^{-m} \beta \gamma\right)\left(q^{m}-q^{-m}\right) /\left(q-q^{-1}\right) . \tag{2.3}
\end{equation*}
$$

Then the element $k \theta(g)$ is diagonalizable on each left $U_{q}(s u(2))$-module $V_{j}(j \in(1 / 2) N)$. Its eigenvalues are given by $\lambda_{m}(g)(m=j, j-1, \cdots,-j)$.

We remark that Theorem 1 is also valid when q is a nonzero complex number as long as q is not a root of unity. It is essentially the same as Theorem 8.5 of Koornwinder [2].

Hereafter, we assume that the parameter of (2.1) satisfies the condition $\bar{\alpha}=\delta, \bar{\gamma}=-\beta$ so that $(k \theta(g))^{*}=k \theta(g)$. Then we see that there exists a family of orthogonal bases $\left(v_{m}^{j}(g)\right)_{m \in I_{j}}$ for V_{j}, depending polynomially on $(\alpha, \beta, \gamma, \delta)$, such that

$$
\begin{equation*}
k \theta(g) \cdot v_{m}^{j}(g)=v_{m}^{j}(g) \lambda_{m}(g) \quad \text { for all } m \in I_{j} \tag{2.4}
\end{equation*}
$$

and
(2.5)

$$
\left\langle v_{m}^{j}(g), v_{n}^{j}(g)\right\rangle=\delta_{m n} D_{m}^{j}(g) \quad \text { for } m, n \in I_{j},
$$

where

$$
D_{m}^{j}(g)=\prod_{-j-m \leq k \leq j-m, k \neq-2 m}\left(\alpha \delta-q^{2 k} \beta \gamma\right)
$$

We fix such a family of orthogonal bases $\left(v_{m}^{j}(g)\right)_{m \in I_{j}}$ for V_{j} under a suitable normalization, although we do not give here its precise description. The connection coefficients between the bases $\left(v_{m}^{j}\right)_{m \in I_{j}}$ and $\left(v_{m}^{j}(g)\right)_{m \in I_{j}}$ can be written explicitly by Stanton's q-Krawtchouk polynomials (see also [2]).
3. We now introduce the matrix elements of V_{j} relative to the two bases $\left(v_{m}^{j}\left(g_{1}\right)\right)_{m}$ and $\left(v_{m}^{j}\left(g_{2}\right)\right)_{m}$. Let $\left(g_{1}, g_{2}\right)$ be a couple of elements in $G L(2 ; C)$ such that

$$
g_{i}=\left[\begin{array}{cc}
\alpha_{i} & \beta_{i} \tag{3.1}\\
\gamma_{i} & \delta_{i}
\end{array}\right] \in G L(2 ; C) ; \quad \bar{\alpha}_{i}=\delta_{i}, \bar{\beta}_{i}=-\gamma_{i}(i=1,2) .
$$

We define the matrix element $\varphi_{m n}^{j}\left(g_{1}, g_{2}\right) \in A(G)\left(m, n \in I_{j}\right)$ of V_{j} by

$$
\begin{equation*}
\varphi_{m n}^{j}\left(g_{1}, g_{2}\right):=\left\langle v_{m}^{j}\left(g_{1}\right), R\left(v_{n}^{j}\left(g_{2}\right)\right)\right\rangle \tag{3.2}
\end{equation*}
$$

We also set $\psi_{m n}^{j}\left(g_{1}, g_{2}\right):=\varphi_{m n}^{j}\left(g_{1}, g_{2}\right) \cdot k$ by using the right action of $k \in$ $U_{q}(s u(2))$.

Proposition 2. a) The element $\psi=\psi_{m n}^{j}\left(g_{1}, g_{2}\right)$ has the relative invariance

$$
\begin{equation*}
k \theta\left(g_{2}\right) \cdot \psi=\psi \lambda_{n}\left(g_{2}\right) \quad \text { and } \quad \psi \cdot \theta\left(g_{1}\right) k=\lambda_{m}\left(g_{1}\right) \psi . \tag{3.3}
\end{equation*}
$$

b) The elements $\psi_{m n}^{j}\left(g_{1}, g_{2}\right)\left(j \in(1 / 2) N, m, n \in I_{j}\right)$ form an orthogonal basis for $A(G)$ under the Hermitian form \langle,\rangle_{L} defined by the Haar measure. The square length of $\psi_{m n}^{j}\left(g_{1}, g_{2}\right)$ is given by

$$
\begin{equation*}
\left\langle\psi_{m n}^{j}\left(g_{1}, g_{2}\right), \psi_{m n}^{j}\left(g_{1}, g_{2}\right)\right\rangle_{L}=q^{2 j} \frac{1-q^{2}}{1-q^{2\left(2^{2 j+1)}\right.}} D_{m}^{j}\left(g_{1}\right) D_{n}^{j}\left(g_{2}\right) \tag{3.4}
\end{equation*}
$$

c) For any g, one has

$$
\begin{equation*}
\Delta\left(\varphi_{m n}^{j}\left(g_{1}, g_{2}\right)\right)=\sum_{k} D_{k}^{j}(g)^{-1} \varphi_{m k}^{j}\left(g_{1}, g\right) \otimes \varphi_{k n}^{j}\left(g, g_{2}\right) \tag{3.5}
\end{equation*}
$$

In view of the relative invariance (3.3), we say that the elements $\psi_{m n}^{j}\left(g_{1}, g_{2}\right)$ are doubly associated spherical functions on G.
4. For each $m, n \in \frac{1}{2} Z$, we set

$$
e_{m n}\left(g_{1}, g_{2}\right):=\psi_{m n}^{j}\left(g_{1}, g_{2}\right) \quad \text { with } j=\max \{|m|,|n|\}
$$

This element is a basic relative invariant in the sense that it appears with smallest j among all relative invariants ψ satisfying (3.3). These $e_{m n}\left(g_{1}, g_{2}\right)$ are expressed as products of linear combinations of the generators x, u, v, y for $A(G)$.

The general matrix elements $\psi_{m n}^{j}\left(g_{1}, g_{2}\right)$ are expressed by the AskeyWilson polynomials [1]:

$$
p_{n}(x ; a, b, c, d \mid q)=a^{-n}(a b, a c, a d ; q)_{n 4} \varphi_{s}\left(\begin{array}{c}
q^{-n}, a b c d q^{n-1}, a z, a z^{-1} \\
a b, \quad a c, \quad a d
\end{array} ; q, q\right),
$$

where $x=\left(z+z^{-1}\right) / 2$. To describe the matrix elements, we introduce the following 2 -parameter extension of the continuous q-Jacobi polynomials:

$$
\begin{equation*}
p_{n}^{(\alpha, \beta)}(x ; s, t: q):=p_{n}\left(x ; \frac{t}{s} q^{1 / 2}, \frac{s}{t} q^{\alpha+1 / 2},-\frac{1}{s t} q^{1 / 2},-s t q^{\beta+1 / 2} \mid q\right) \tag{4.1}
\end{equation*}
$$

where s and t are continuous parameters. If $(\alpha, \beta)=(0,0)$, then formula (4.1) gives Koornwinder's 2-parameter extension of the continuous q Legendre polynomials in [2]. If $(s, t)=(1,1),(4.1)$ is Rahman's parametrization of continuous q-Jacobi polynomials.

For a couple (g_{1}, g_{2}) of (3.1), we define the zonal element $X=X\left(g_{1}, g_{2}\right)$ by

$$
\begin{equation*}
2\left|\alpha_{1} \gamma_{1} \alpha_{2} \gamma_{2}\right| X=\frac{1}{q+q^{-1}}\left(\psi_{00}^{1}\left(g_{1}, g_{2}\right)-\left(\alpha_{1} \delta_{1}+\beta_{1} \gamma_{1}\right)\left(\alpha_{2} \delta_{2}+\beta_{2} \gamma_{2}\right)\right) \tag{4.2}
\end{equation*}
$$

assuming that $\alpha_{i} \neq 0, \gamma_{i} \neq 0(i=1,2)$. Note that $X=X\left(g_{1}, g_{2}\right)$ satisfies

$$
k \theta\left(g_{2}\right) \cdot X=0, \quad X \cdot \theta\left(g_{1}\right) k=0, \quad X^{*}=X
$$

Theorem 3. The doubly associated spherical functions $\psi_{m n}^{j}\left(g_{1}, g_{2}\right)$ are represented by the Askey-Wilson polynomials (4.1) in X.

Case I. $m+n \geq 0, m \leq n$:

$$
q^{-k(k+\mu+2 \nu)} C_{\mu \nu k}\left|\alpha_{1} \gamma_{1} \alpha_{2} \gamma_{2}\right|^{k} p_{k}^{(\mu, \nu)}\left(X ;\left|\alpha_{2} / \gamma_{2}\right|,\left|\alpha_{1} / \gamma_{1}\right|: q^{2}\right) e_{m n}\left(g_{1}, g_{2}\right),
$$

Case II. $m+n \geq 0, m \geq n$:

$$
q^{-k(k+\mu+2 \nu)} C_{\mu \nu k}\left|\alpha_{1} \gamma_{1} \alpha_{2} \gamma_{2}\right|^{k} p_{k}^{(\mu, \nu)}\left(X ;\left|\alpha_{1} / \gamma_{1}\right|,\left|\alpha_{2} / \gamma_{2}\right|: q^{2}\right) e_{m n}\left(g_{1}, g_{2}\right),
$$

Case III. $m+n \leq 0, m \geq n$:

$$
q^{-k(k+\mu)} C_{\mu \nu k}\left|\alpha_{1} \gamma_{1} \alpha_{2} \gamma_{2}\right|^{k} \gamma_{k}^{(\mu, \nu)}\left(X ;\left|\gamma_{2} / \alpha_{2}\right|,\left|\gamma_{1} / \alpha_{1}\right|: q^{2}\right) e_{m n}\left(g_{1}, g_{2}\right),
$$

Case IV. $m+n \leq 0, m \leq n$:

$$
q^{-k(k+\mu)} C_{\mu \nu k}\left|\alpha_{1} \gamma_{1} \alpha_{2} \gamma_{2}\right|^{\kappa} p_{k}^{(\mu, \nu)}\left(X ;\left|\gamma_{1} / \alpha_{1}\right|,\left|\gamma_{2} / \alpha_{2}\right|: q^{2}\right) e_{m n}\left(g_{1}, g_{2}\right) .
$$

Here $\mu=|m-n|, \nu=|m+n|, k=\min \{j+m, j-m, j+n, j-n\}$ and $C_{\mu \nu k}$ stands for

$$
C_{\mu \nu k}=\left(\frac{\left.q^{2(\mu+\nu+1)} ; q^{2}\right)_{k}}{\left(q^{2}, q^{2(\mu+1)}, q^{2(\nu+1)} ; q^{2}\right)_{k}}\right)^{1 / 2} .
$$

Theorem 3 is a generalization of Theorem 8.3 of Koornwinder [2] to non-zonal cases. The expressions in Theorem 3 make sense even when some of the $\alpha_{1}, \gamma_{1}, \alpha_{2}, \gamma_{2}$ are zero. We also remark that the orthogonality in Proposition 2 is interpreted as the orthogonality relation for the AskeyWilson polynomials.

By the above interpretation, we obtain an addition formula for $p_{n}^{(0,0)}(x ; s, t: q)$. In fact, property (3.5) is translated into an addition formula for them.

Theorem 4. The polynomials $p_{n}^{(0,0)}(x ; s, t: q)(n \in N)$ have the following addition formula involving an extra parameter u :

$$
\begin{align*}
& q^{-n / 2}(q ; q)_{n} p_{n}^{(0,0)}(x(z w) ; s, t: q) \tag{4.3}\\
&= \frac{1}{\left(-u^{2} q,-u^{-2} q ; q\right)_{n}} p_{n}^{(0,0)}(x(z) ; u, s: q) p_{n}^{(0,0)}(x(w) ; u, t: q) \\
&+\sum_{k=1}^{n} \frac{(q ; q)_{n+k}\left(1+u^{2} q^{2 k}\right) z^{-k} w^{-k}\left(\frac{u}{s} z,-u s z, \frac{u}{t} w,-u t w ; q\right)_{k}}{(q ; q)_{n-k}\left(1+u^{2}\right)\left(-u^{2} q ; q\right)_{n+k}\left(-u^{-2} q ; q\right)_{n-k}} \\
& \quad \times p_{n-k}^{(k, k)}(x(z) ; u, s: q) p_{n-k}^{(k, k)}(x(w) ; u, t: q) \\
&+\sum_{k=1}^{n} \frac{(q ; q)_{n+k}\left(1+u^{-2} q^{2 k}\right) z^{-k} w^{-k}\left(\frac{s}{u} z,-\frac{1}{u s} z, \frac{t}{u} w,-\frac{1}{u t} w ; q\right)_{k}}{(q ; q)_{n-k}\left(1+u^{-2}\right)\left(-u^{2} q ; q\right)_{n-k}\left(-u^{-2} q ; q\right)_{n+k}} \\
& \quad \times p_{n-k}^{(k, k)}\left(x(z) ; \frac{1}{u}, \frac{1}{s}: q\right) p_{n-k}^{(k, k)}\left(x(w) ; \frac{1}{u}, \frac{1}{t}: q\right),
\end{align*}
$$

where z and w are independent variables and $x(z)=\left(q^{-1 / 2} z+q^{1 / 2} z^{-1}\right) / 2$.
We remark that Rahman and Verma [4] have obtained an addition formula for Rogers' q-ultraspherical polynomials $p_{n}^{(\alpha, \alpha)}(x ; 1,1: q)$ by analytic methods. Their work suggests that Theorem 4 may be extended to an addition formula containing one more parameter.

References

[1] R. Askey and J. Wilson: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Memoirs Amer. Math. Soc., 54, no. 319 (1985).
[2] T. H. Koornwinder: Orthogonal polynomials in connections with quantum groups. Orthogonal Polynomials, Theory and Practice (ed. P. Nevai). NATO ASI Series, Kluwer Academic Publishers, pp. 257-292 (1990).
[3] M. Noumi and K. Mimachi: Quantum 2-spheres and big q-Jacobi polynomials. Commun. Math. Phys., 128, 521-531 (1990).
[4] M. Rahman and A. Verma: Product and addition formulas for the continuous q-ultraspherical polynominals. SIAM J. Math. Anal., 17, 1461-1474 (1986).

