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(Communicated by Kdsaku YOSIDA, M. J. A, Feb. 13, 1989)

Introduction and results. L2 (1<p<oo,* e R) denotes the space of
weighted p-summable functions on R* with norm given by |u|,,=

([ a+lapoiu@pdz)” or lul.,=ess. sup.cpe (L+z0 u@)).  When
r=0, we put L*=L¢ with |u|,=|ul,,. For seN, ||u|[,,,,=( L Qlapy

2
D tar<s | Doul) \zdx>1/ represents the norm of H:, the weighted Sobolev space

of order s on R*. For general se R, H: is defined by using the interpola-
tion theory and H*® stands for H} with |u|,=|lu|,,. The dual space of L?
is L7, for 1<p<oco with 1/p+1/q=1. Hzi=(H)* for s>0 with H:=
H3(R?) (s>0) being the closure of C3(R%) in H:.

Now, we put X=4V X L* and X*=V*x L* with norms || U||y=|u|,+
|v], and ||&||gs=&|lpx+n), for U='(u,v) and £=(&,75). Here, V=H'NL*
and V*=H-'4L** with norms ||u|,=/|u|,+|ul and ||§|l,»=inf._. .., (1&:]]-.+
&l

Our aim of this paper is to solve the following problems: Let 0<T,
< 0.

(I) Find a functional W, &) on t e (0, T,) X X* satisfying

3 3 WL, E) | L FWEE) | FWE,E)
ay 2w 5),de [n(x)((A ) +ib +a )

35(z) 55 (@)’ e @)
oW, &) | .
8@ 20D L in@g (e O, E)]dx,
(1.2) W, 0)=1, W, B)=W,(5).

Here given data are Wy(&) and g(z, t).
(II) Find a family of Borel measures {u(t, dU)}<,<r, on X satisfying

an  ["[ 34’“ D ut, avyat +[_0(0, U@ty

="j T [ Jcau@— rauan+ot, 09 226 Dy o 226 D |

ov(x) ou(x)
X dxp(t, dU)dt
for suitable ‘test functionals’ @(t, U) with given data »(dU) and g(z, ?).
For the notational simplicity, we put here f(u)=0au’+bu*+cu, F(u)=
au'/4+buP3+cu?/2 and

HU)=H(u, v) =Im {lv@) P24 |Pu(x) )24 F(w(x))}dx.
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Assume that
(AS0) a>0 and bzg—g—ac with =%—£>0

For 0<5<1 and 0<r, we define auxiliary function spaces as V=H'7
NI, V¥=H;* 4+ L3, X="(VxH=) and X*=V*x H’. Defining a non-
negative functional A(U)=||u||,_s -.+|up _.s+]Vll-s -, o0 X', we introduce
the notion of test functionals as follows.

Definition 1. A real function &(-, -) defined on [0, T) x X is called a
test functional if it satisfies the following :

1) &, ) is continuous on [0, TO)XX and verifies sup,y,|9,.(t, U)|/
A+ AU <oo.

(2) (., -) is Fréchet X-differentiable in the direction X. Moreover,
@,(-, -) is continuous form [0, T,) X X to X* and is bounded, i.e. @, U)e
Cy(0, Ty; V¥, 0,(t, U) € Cy(0, Ty; HY).

(8) There exists 0<T<T,, T<oo, depending on @ such that ¢(¢, U)=0
for any t>T and U ¢ X. (In this case, @ is said to have the compact sup-
port in ¢.)

Now, we introduce the notion of solutions.

Definition 2. A family of Borel measures {u(¢, dU)},<r, on X is cal-
led a strong solution of Problem (II) on (0, T,) if it satisfies the following
conditions:

) f A+ AUN-, d) e L0, T

2 j O(U)u(t, dU) is measurable in ¢ for any non-negative, weakly
X

continuous functional @(-) on X.

(8) For any test functional @(-, ), it satisfies (II).

Definition 3. A functional W(t, &) defined on [0, T)) X X* will be cal-
led a strong solution of problem (I) on (0, T) if it satisfies:

(1) For each & e X*, W(t, 5) belongs to L'0, T, and continuous at
t=0.

) W@, E) is three times Fréchet X*-differentiable in the direction
X* for a.e.t. Moreover, 8*W(t, 8)/d&(x)* with 1< k<3 and 6W(t, 5)/dn(x)
exist as elements in 9'(R%) for a.e.t.

8) W, B) satisfies (I.1)-(1.4) as distributions in ¢ for each & e X*=

=_ I, X* (see below).

Our results are

Theorem A. Put E, (U)=|v}/2+max (1/2, ¢/2+|b|/6)|uli+ (a/4+|b]/
6)|ult. Under Assumption (ASO), for any Borel probability measure ;(dU)
on X satisfying

a=1 when £>0,

(ASD) L(l“'rE*(U))a““(dUK“ for {a>3/2 when £=0, d<3

and any g € L¥0, Ty; LY N L0, T, ; V*), there exists a solution {u(t, dU)}o<i<1,
of (1I).
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Theorem B. Assume that (ASO0) holds. Let a positive definite func-
tional Wy (&) on X* be given which is three times Fréchet X*-differentiable
in the direction X* having 6*W(8)]6&(x)* with 1<k<3 and SW(58)/on(x)
n 9'(RY). Then, for any ge L*0,T,; LYNL~0, T,; V*), there exists a
strong solution W(t, B) of Problem (I).

Sketch of proofs. For (I) and (IT), we may correspond the following
nonlinear Klein-Gordon equation as characteristics.

(NLKG) Outcut-duw+awd=g on (z,t)e 2%, T,

Uloe=0, Ulo=u and ul,_,="1v,.
The meaning of the characteristic, the definition of functional derivatives
and the terminology used here, are explained precisely in Inoue [3].

Let {w,} be a complete orthonormal basis in L?, dense in H'N H? such
that 1) w,(x) e LN H, ocw,(x) e L for |«|<2 and (2) A+ |z *w,(x) € L=,
A4z 0w (x) /02" € L> for some r>0. We put z,u=2 7, {u, wHw,.

Let u,(t) e C¥[0, Ty ; z,,V) be the Galerkin approximation of NLKG
which satisfies

;% U, =1L, LU, () +1,G¢) with U,(0)=I1U, U="(th,v,)

where I1,U="(zr,t, 1,0), Unt)="t,(1), v.(), LU)="'(v, dJu—f(w)), G(t)=
(0, g(1)).
Lemma 1. Assume (AS0). For any >0, t>0, we have

et 1 t 2
Hu(t), va(t)<e [H(um, v+ j 19()] ds].
Moreover, putting C,, =1+ (2t*+et)e* <, we get
E (U 0)= L0 (O B4 LB [} -] 0 (E) 13s05,.[E*(Um(0>)+lj 19(3) Fds]-
2 2 2eJo

Put 11, X =",V Xn, L"), Xo=Us, I,X, IX="(@,Vxz,H"), X.=
e I,X, and X*=Ug_, I1,X*. We define an operator from I7,X to

C(0,Ty; 1,X) by S,.(OUL,U,)="(u,(t), 4,(t)) for U,e X. For any meas-
ure y, on X and o e B(X), we define, pui™(w)=pl (0N I,X)), p™(E, 0)=
(S, (D) 'w).  Clearly, ™ (dU) and p™(t, dU) are concentrated on I, X=
m,X.

Lemma 2. For any test functional @ with compact support in t, we
have

[ LU oot atyas + [ 00, Uy @0)

0 Jx ot X

T o
= —L L [(Au—fw)+g(D), D,(t, U)) 4w, D,(¢, U))lp™ (&, dU)dE.

Defining the Fourier-Stieltjes transform of x™(¢, dU) and the opera-
tor L(6/d5) by

Wmi(t, E):J eXE 0y m(t, dU) =f eI Uy m (¢, dU)
X X
and

L(i)www(s, 5)=j etnes (T 8, LU ™ (s, dU),
38 ¥

we have
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Lemma 3. Under Assumption (AS0), we have
W, 5)=iL(_;?) W(t, 8)+i(8, GE)SW™ (L, §)

for 5 e Il, X* k<m

Moreover, we remark

Lemma 4. (1) X is compactly imbedded in X.

(2) There exists a constant C such that

5 g=3/4 for k>0,
1+ A< CA+E)  where {ﬁ=3/2 o 4es,

Proceeding as in Vishik and Komec [4], we get

Lemma 5. W™(t, B) forms a equicontinuous and equibounded set on
C(0, T) X Y*) where Y*=L*XV.

From this, there exist W(¢, &) and a subsequence W™ (¢, &) such that
W™(t, B) converges uniformly to W(t, &). Using the Prokhorov theorem
and modifying a little the arguments in [4], we have

Proposition. (1) For any t, there exists a measure u(t, dU) such that
A4 A ™ (t, dU) converges weakly to (14 AU))u(t, dU) on X. And this
tmplies that ™" (¢, dU) itself converges weakly to u(t, dU) on X.

(2) Any weak limit u(t, dU) of measures u™’(t,dU) has the Fourier-
Stietjes transform i(t, £)=W(, &) for £ Y*, te [0, T,).

(8) Forany tel0,T), ut, X\X)=0.

Lemma 6. For 5e X’ﬁ,f <5 (E, LU)Yu™(t, dU), the sequence of
X
continuous functions of te [0, T,] is uniformly bounded, and for any t, it
converges to I eS8, L)), dU) as m'—oo.
X

Combining these with the arguments in Foiag [1], we get Theorem A.
On the other hand, by the conditions for W (5), we may suppose that there
exists a measure y(dU) on X satisfying /,(8)=Wy(&) and (AS1). Remark-
ing the facts explained in Foiag [2] and Inoue [3], we may prove Theorem
B.

Remark. Detailed proofs with other topics will be published else-
where in the near future.
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