96. Orbi-maps and 3-orbifolds

By Yoshihiro TAKEUCHI
Department of Mathematics, Aichi University of Education
(Communicated by Kunihiko Kodaira, M. J. A., Dec. 12, 1989)

1. Definitions. An *n*-orbifold is a topological space locally homeomorphic to (an open set in \mathbb{R}^n)/(a finite group action) and each point of it is provided with an isotropy data. By the symbol |X|, we shall mean the underlying space of the orbifold X.

For studying orbifolds, we need a map between orbifolds which respects their orbifold structures. An orbifold X is good if |X| is homeomorphic to (a manifold \tilde{X})/(a properly discontinuous action). In this paper, orbifolds which we deal with are good orbifolds. All orbifolds will be assumed to be good unless otherwise specified. If \tilde{X} is simply connected, the quotient map $p: |\tilde{X}| \rightarrow |X|$ is called the *universal orbi-covering*.

Let X and Y be orbifolds. Let $p: |\tilde{X}| \rightarrow |X|$ and $q: |\tilde{Y}| \rightarrow |Y|$ be the universal orbi-coverings. We introduce an orbi-map between X and Y as follows; By an $orbi-map\ f: X \rightarrow Y$, we shall mean a continuous map $h: |X| \rightarrow |Y|$ with a fixed continuous map $\tilde{h}: \tilde{X} \rightarrow \tilde{Y}$ which satisfies the following conditions:

- $(01) h \circ p = q \circ \tilde{h}.$
- (02) For each $\sigma \in \operatorname{Aut}(\tilde{X}, p)$, there exists a $\tau \in \operatorname{Aut}(\tilde{Y}, q)$ such that $\tilde{h} \circ \sigma = \tau \circ \tilde{h}$.
- (03) There exists a point $\tilde{x} \in \tilde{X} p^{-1}(\Sigma X)$ such that $\tilde{h}(\tilde{x}) \in \tilde{Y} q^{-1}(\Sigma Y)$.
 - 2. Constructions and modifications of orbi-maps.
- **2.1.** Theorem. Let M be a compact 2- or 3-orbifold and N an orientable 3-orbifold such that the total space of the universal orbi-covering of $\operatorname{Int}(N)$ is homeomorphic to \mathbb{R}^3 . Suppose $\varphi: \pi_1(M) \to \pi_1(N)$ is a homomorphism such that for any local group G_x of M, $\varphi(G_x) \not\cong A_5$. Then, there exists an orbi-map $f: M \to N$ such that $f_* = \varphi$.
- 2.2. Theorem (Transversal modification of dimension 3). Suppose M and N are compact 3-orbifolds such that N is containing a properly embedded, 2-sided, 2-suborbifold F such that $\operatorname{Ker}(\pi_1(F) \to \pi_1(N)) = 1$, $\pi_2(F) = 0$, and the total space of the universal orbi-covering of $\operatorname{Int}(N-F)$ is homeomorphic to \mathbb{R}^3 . Suppose $f: M \to N$ is any orbi-map such that for any local group G, $f_*(G) \not\cong A_5$. Then there exists an orbi-map $g: M \to N$ such that
 - (1) g is C-equivalent to f,
- (2) each component of $g^{-1}(F)$ is a properly embedded, 2-sided, incompressible 2-suborbifold in M, and
- (3) for properly choosen product neighborhoods $F \times [-1, 1]$ of $F = F \times 0$ in N and $g^{-1}(F) \times [-1, 1]$ of $g^{-1}(F) = g^{-1}(F) \times 0$ in M, g maps each fiber $x \times 1$

[-1, 1] homeomorphically to the fiber $g(x) \times [-1, 1]$ for each $x \in g^{-1}(F)$.

As an application of these theorems, we can prove the "Untangling theorem." (See 4.2.)

3. The classification theorem. Let M and N be 3-orbifolds. Let Ψ : $\pi_1(M,x) \rightarrow \pi_1(N,y)$ be a homomorphism. We say that Ψ respects the peripheral structure, if the following holds. For each boundary component F of M, there exists a boundary component G of N, such that $\Psi(i_*(\pi_1(F,x'))) \subset A$, and A is conjugate in $\pi_1(N,y)$ to $j_*(\pi_1(G,y'))$, where i and j are inclusions.

Let ${\mathcal W}$ be the class of all compact, connected, orientable 3-orbifolds which are

- (i) finitely uniformizable,
- (ii) irreducible,
- (iii) sufficiently large,
- (iv) the local group of any point is not isomorphic to A_5 , and
- (v) in which every turnover with non-positive Euler number is boundary-parallel.

By the recent result of W.D. Dunbar [1], the orbifold M which belongs to \mathcal{W} has a hierarchy. With these preparation, we can prove the classification theorem as parallel as the proof of 13.6 of [2].

- **3.1.** Theorem. Let $M, N \in \mathcal{W}$. Suppose all the components of ∂M are incompressible in M. Let $\Psi : \pi_1(M) \to \pi_1(N)$ be an isomorphism which respects the peripheral structure. Then either
- (1) there exists an orbi-isomorphism $f: M \rightarrow N$ which induces Ψ or
- (2) M is a twisted I-bundle over a closed non-orientable 2-orbifold F and N is an I-bundle over a 2-orbifold G such that $\pi_1(F) \cong \pi_1(G)$.

As the corollary of it, we derive

3.2. Corollary. Let $M, N \in \mathcal{W}$. Suppose M is closed and $\pi_1(M) \cong \pi_1(N)$. Then M and N are orbi-isomorphic.

Zimmermann showed the consequence including 3.2 in [6] by using Thurston's orbifold geometrization theorem and his own theorem.

- 4. Applications for links and tangles. We apply our result so that we classify a class of links. Recall that a link (S^3, L) is *prime* if there is no S^2 in S^3 that separates the component of L, and any S^2 that meets L in two points, transversely, bounds in S^3 one and only one ball intersecting L in a single unknotted spanning arc. Let (S^3, L) be a link and X be the orbifold with $\Sigma X = L$. Suppose the orders of every local group of ΣX are n. We call such an orbifold X the associated orbifold with weight n of (S^3, L) , denoted by $O_{(L,n)}$. We define the n-weighted orbi-invariant of (S^3, L) , denoted by $Orb_n(L)$, by the fundamental group of the associated orbifold with weight n of (S^3, L) . We call the link (S^3, L) sufficiently large if the orbifold $O_{(L,*)}$ is sufficiently large. By applying 3.2, we have the following result.
- **4.1.** Theorem. Suppose (S^3, L) and (S^3, L') are prime and sufficiently large links. (S^3, L) and (S^3, L') are the same link type, if and only if

 $\operatorname{Orb}_n(L) \cong \operatorname{Orb}_n(L')$ for some $n \in \mathbb{Z}^{\pm}$, $n \geq 2$.

Zimmermann shows the similar result in [7].

For a tangle (B, t), we define $\operatorname{Orb}_n(t)$ in the similar manner as in the case of links. We get the following result as an application of 2.1 and 2.2.

4.2. Theorem. Let (B, t) be a k-strings tangle. (B, t) is the trivial tangle if and only if $Orb_2(t) \cong A_1 * \cdots * A_k$, where $A_i \cong Z_2$ for each i.

References

- [1] Dunbar, W. D.: Hierarchies for 3-orbifolds. Topology and its Applications, 29, 267-283 (1988).
- [2] Hempel, J.: 3-manifolds. Ann. of Math. Studies, 86 (1976).
- [3] Satake, I.: On a generalization of the notion of manifold. Proc. Nat. Acad. Sci. U.S.A., 42, 359-363 (1956).
- [4] Thurston, W. P.: The geometry and topology of three manifolds. Mimeographed Notes, Princeton University (1978).
- [5] Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Ann. of Math., 87, 56-88 (1968).
- [6] Zimmermann, B.: Some groups which classify knots. Math. Proc. Camb. Phil. Soc., 104, 417-418 (1988).
- [7] Boileau, M. and Zimmermann, B.: The π -orbifold group of a link. Math. Z., 200, 187-208 (1989).