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Cambridge University

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1989)

O. The purpose of this paper is to show how some information on
prime numbers in very short intervals, of type [x, x+ x] withe0 arbitrary,
may be derived by classical methods o analytic number theory. We have
not attempted in this note to give the sharpest result possible in this
direction. For comparison, the known applications for zero-density results
give

(x+x)-z(x)x/log x (/7/12)
and a corresponding result or almost all intervals for 1/6 (Huxley [1],
[3], p. 19).

1. In this section we derive the main estimate in our work. De-
ductions from it will be given in section 2.

We shall need rom the theory the following known results. We use
the notation p=+ir for the real and imaginary parts of a non-trivial zero
of Riemann zeta-function.
(A) The number of p with T<IrI<T+I is O(logT), where multiplicities
are counted.

This is Theorem 9.2 in Titchmarsh [4].
(B) We have 1-/>>(log)-V(loglog

This is the Vinogradov-Korobov bound ([4], p. 135).
(C) The explicit formula with remainder of prime number theory may be
taken as

Y--(y)-- Y + O(log y+yT-(log T))
Irl<T

provided T, y are greater than 1 and y is bounded by a fixed power of T.
This follows from Theorem 3.8 of Ptterson [2].

Let be fixed with 0<]<1, let X>I and N=X,. DefineNotation.
X1/

Theorem. Suppose N is an integer. Define f(O) to be_
(

_
A(m)--o:-(o: 1))e.

2=

Then f(O) is o(X) (with constant independent of
Remarks. The integrality of N is assumed to simplify the notation;

sums over m in (a-X, a X] may be dealt with in the same way in general.
The proof shows that the bound may be tken as

0(X exp(-A(log X)l/(loglog X)-m)).
We prove first the following



No. 10] Matrix Prime Number Theorems 337

Main lemma. With notation as before, let >0. Then
2:= E g(r)h(r, 0)<<,(log X)’,

0<r<N+

where gff) is log X/N for O<’<N/(logX) and r- for ’>N/(logX), and
h(r,a) is min(N, II(2)-(rlogX.N-+a)ll-9. Here Iltll denotes the distanee
of t to the nearest integer; and the minimum has the ntural interpretation
as N when the second member is not defined.

Remark. Here nd in 11 subsequent sums it is assumed that the
are counted with multiplicity.

Proof of the Lemma. Firstly X is a sum X+X where X relates to
the range up to N/(log X) and X to the rest. We shall prove

(i) X(<(logX)
and

(ii) X (log X);
this is enough for the Main lemma.

Subproof of (i). We have X=logX.N- hff, t). Consider
O<r< N/(log X)

the sums 2:() defined as 2: but with the extra condition that N-h(r, O) lies
in [k,k+l) for/c--0,1, ...,M and M<N. We prove

(*) X((((logX)2min(1, k -1)
for all/c (with the natural convention or k=0) and then (i) follows by the
harmonic series summation.

For (*) we note that for any t and t’ the inequality

k/N< log Xt+ t’
2N

<(k+ l) /N

defines (for fixed t’) at most 2 intervals in t, for 0<t<2N/logX of length
at most 2/log X. By (A) a total of at most 0(log X) ordinates " is involved
in 2:), and this is enough.

Subproof of (ii). Firstly split the range in 2:z into a number whose
lengths are in geometric progression by powers of 2; it is enough, since
log2 N1+ <<, log X, to prove that

(**) 2:’= ’- h(’, t) <<(log X)
T(a) < ,<T(a ])

where T(a) is 2N/(log X). Here the factor .-1 may be replaced by T(a)-.
By further splitting into sums 27 according to the value of N-h(", )a, ()

exactly as in (i), we are reduced to proving
(***) 2:’,,() <<(log X) rain(l, k-1)

The argument for (***) is as before in (i), using (A), but this time the
number of intervals is bounded by T(a)/(2=N/logX). Thus the factors
T(a) cancel and the result is entirely analogous to (*). This completes the
proof of (ii), and with it the Main lemma.

Proof of the Theorem. From (C), noting that the coefficient of e is
ff(a) ff(a -)+-, we see that f (t) may be replaced by

f(t)=-- p-l(1--c-)e
Irl<NX+

with error which is O(N(logX+N--’X(logX)Z)), for )0, and so o(X)
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since ])0. (Naturally could be a suitable function of X here.) Now
reversing the summation in --f(O) and summing geometric progressions
with ratio a-e-*, we find we must establish

() p-x(1--a-)e(x-e-)/(a-e---l)=o(X).

To bring this to a form in which the Main lemma applies, we first note
that we may take0 by splitting conjugate pairs and changing 8 for
so that (0 follows from

() p-x(1--)(x-e--l)(-e--l)-’l=o(X).
O<r<N+

Now for rN/(log X) we have

p-(1---) ((log a=lgX/N.
Otherwise we have ]pl, so that in the sum in (*0 we get, after bounding
1--a- in the upper range of , a sum cf the shape in the Main lemma but
with h(, ) replaced by Xh’(, O) where

h’(r, o)=l x- e-- /I-e-- I.
Here we use the natural convention that h’ is defined by continuity is the
case the denominator vanishes.

We bound X by (B), chocsing for example0s that all are bounded
by X. This gives at least X=O(X(logX)-) for all A)0; thus (0 and so
the theorem follows from the Main lemma and

(.) h’(r, ) << h (r, ).
Firstly this is true when Re(a- e-) is negative, for then the left hand

side is absolutely bounded above and the right hand side is ) 1. In the other
case we have

-e---l[[w--lI
where w=exp(i(--rlogX/N--8))--geometrically this says that the radius
from 0 to w lies wholly outside the circle centre 1 and radius ]w-l[. We
write

w-1=2Isin t where eTM w,
and then use the fact that sin t lies between 2-t and t for t4/2. The
required cases of (), including the cases where the minimum on either side
is N and the degenerate case w 1, follow at once. This completes the proof
of the Theorem.

2. Since the theorem provides a uniform non-trivial bound or f(O),
there are corresponding bounds, which give this paper its title, for associated
operators and certain integrals.

For example

Io e(-)o(f(O)+ f(--O))dO
has a uniform (in ], k) bound o(X), and so bounds can be given for the L-norm (which is the spectral radius max [ taken over eigenalues) for a
family of symmetric Toeplitz matrices (c_) formed from the coefficients
of f. This is what constitutes a "matrix prime number theorem" in our
terminology. To convert such a statement intv a psitivity result, of the
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expected kind (after Weil [5]), is easily done, since adding o(X)I to these
matrices makes them positive definite.

For a small modification we can get Hankel matrices (c/) and similar
bounds. From the proof it is clear that/<a, i.e. partial progress to the
Riemann Hypothesis, vcould immediately give O(X). In the same wy it
seems that the nuclear norm problem of estimating X II is related to the
question of primes in short intervals as in the work of Huxley quoted in
section 0; and the Hilbert-Schmidt norm problem of estimating 2:11 is
similarly related to the problem of primes in almost all short intervals also
mentioned there.

Finally a different method may be used to estimate the spectral radius
or matrices (Ic-l) as above, or ]1/6.
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