90. Differential Inequalities and Carathéodory Functions

By Mamoru Nunokawa
Department of Mathematics, Gunma University
(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1989)

Let P be the class of functions $p(z)$ which are analytic in the unit disk $E=\{z:|z|<1\}$, with $p(0)=1$ and $\operatorname{Re} p(z)>0$ in E.

If $p(z) \in P$, we say $p(z)$ a Caratheodory function. It is well known that if $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ is analytic in E and $\operatorname{Re} f^{\prime}(z)>0$ in E, then $f(z)$ is univalent in $E[2,7]$.

Ozaki [6, Theorem 2] extended the above result to the following:
If $f(z)$ is analytic in a convex domain D and

$$
\operatorname{Re}\left(e^{i \alpha} f^{(p)}(z)\right)>0 \quad \text { in } D
$$

where α is a real constant, then $f(z)$ is at most p-valent in D.
This shows that if $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ is analytic in E and

$$
\operatorname{Re} f^{(p)}(z)>0 \quad \text { in } E,
$$

then $f(z)$ is p-valent in E.
Nunokawa [3] improved the above result to the following:
Let $p \geqq 2$. If $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ is analytic in E and

$$
\left|\arg f^{(p)}(z)\right|<\frac{3}{4} \pi \quad \text { in } E,
$$

then $f(z)$ is p-valent in E.
Definition. Let $F(z)$ be analytic and univalent in E and suppose that $F(E)=R$. If $f(z)$ is analytic in $E, f(0)=F(0)$, and $f(E) \subset R$, then we say that $f(z)$ is subordinate to $F(z)$ in E, and we write

$$
f(z)<F(z)
$$

In this paper, we need the following lemmata.
Lemma 1. If $p(z)$ is analytic in E, with $p(0)=1$ and

$$
\operatorname{Re}\left(p(z)+z p^{\prime}(z)\right)>\beta \quad \text { in } E,
$$

where $\beta<1$, then we have

$$
\begin{equation*}
\operatorname{Re} p(z)>(1-\beta) \log \frac{4}{e}+\beta \quad \text { in } E \tag{1}
\end{equation*}
$$

Proof. Let us put

$$
\begin{aligned}
g(z) & =\frac{1}{1-\beta}\left(p(z)+z p^{\prime}(z)-\beta\right) \\
& =\frac{1}{1-\beta}\left((z p(z))^{\prime}-\beta\right)
\end{aligned}
$$

Then we have

$$
g(z) \in P
$$

This shows that

$$
g(z)=\frac{1}{1-\beta}\left((z p(z))^{\prime}-\beta\right) \prec \frac{1+z}{1-z}
$$

and it follows that

$$
\begin{equation*}
(z p(z))^{\prime} \prec(1-\beta) \frac{1+z}{1-z}+\beta . \tag{2}
\end{equation*}
$$

Then we have

$$
z p(z)=\int_{0}^{z}(t p(t))^{\prime} d t
$$

and therefore, we have

$$
\begin{aligned}
p(z) & =\frac{1}{z} \int_{0}^{z}(t p(t))^{\prime} d t \\
& =\frac{1}{r e^{i \theta}} \int_{0}^{r}(t p(t))^{\prime} e^{i \theta} d \rho \\
& =\frac{1}{r} \int_{0}^{r}(t p(t))^{\prime} d \rho
\end{aligned}
$$

where $z=r e^{i \theta}, 0<r<1, t=\rho e^{i \theta}$ and $0 \leqq \rho \leqq r$.
From [1, Theorem 7, p. 84], (2) and applying the same method as in the proof of [4, Main theorem], we have

$$
\begin{aligned}
\operatorname{Re} p(z) & =\frac{1}{r} \int_{0}^{r} \operatorname{Re}(t p(t))^{\prime} d \rho \\
& \geqq \frac{1}{r} \int_{0}^{r}\left[(1-\beta) \frac{1-\rho}{1+\rho}+\beta\right] d \rho \\
& =\frac{1}{r}[(1-\beta)(-r+2 \log (1+r))+\beta r] \\
& =(1-\beta)\left[2 \log (1+r)^{1 / r}-1\right]+\beta \\
& \geqq(1-\beta)[2 \log 2-1]+\beta \\
& =(1-\beta) \log \frac{4}{e}+\beta
\end{aligned}
$$

for $0<|z|=r<1$. This completes our proof.
From Lemma 1, we easily have the following result:
Lemma 2. If $p(z)$ is analytic in E, with $p(0)=1$ and

$$
\operatorname{Re}\left(p(z)+z p^{\prime}(z)\right)>-\frac{\log (4 / e)}{2 \log (e / 2)} \quad \text { in } E,
$$

then $p(z) \in P$ or $p(z)$ is a Carathéodory function.
Proof. Putting the right-hand side of (1) be zero, then we have the equation

$$
(1-\beta) \log \frac{4}{e}+\beta=0
$$

and that

$$
\beta=-\frac{\log (4 / e)}{2 \log (e / 2)} .
$$

This shows that

$$
\operatorname{Re}\left(p(z)+z p^{\prime}(z)\right)>-\frac{\log (4 / e)}{2 \log (e / 2)} \quad \text { in } E
$$

implies $\operatorname{Re} p(z)>0$ in E.
Lemma 3. Let $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ be analytic in E and if there exists a $(p-k+1)$-valent starlike function $g(z)=z^{p-k+1}+\sum_{n=p-k+2}^{\infty} b_{n} z^{n}$ that satisfies

$$
\operatorname{Re} \frac{z f^{(k)}(z)}{g(z)}>0 \quad \text { in } E
$$

then $f(z)$ is p-valent in E.
We own this lemma to [5, Theorem 8].
Main theorem. Let $p \geqq 2$. If $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ is analytic in E and

$$
\begin{equation*}
\operatorname{Re} f^{(p)}(z)>-\frac{\log (4 / e)}{2 \log (e / 2)} p!\quad \text { in } E, \tag{3}
\end{equation*}
$$

then $f(z)$ is p-valent in E.
Proof. Let us put

$$
p(z)=f^{(p-1)}(z) /(p!z)
$$

Then, from the assumption (3) and by an easy calculation, we have

$$
\begin{aligned}
& \operatorname{Re}\left(p(z)+z p^{\prime}(z)\right)=\operatorname{Re}\left(f^{(p)}(z) / p!\right) \\
& \quad>-\frac{\log (4 / e)}{2 \log (e / 2)} \quad \text { in } E,
\end{aligned}
$$

and $p(0)=1$. Then, from Lemma 2, we have

$$
\operatorname{Re} p(z)=\frac{1}{p!} \operatorname{Re} \frac{f^{(p-1)}(z)}{z}>0 \quad \text { in } E
$$

This shows that

$$
\begin{equation*}
\operatorname{Re} \frac{z f^{(p-1)}(z)}{z^{2}}>0 \quad \text { in } E . \tag{4}
\end{equation*}
$$

It is trivial that $g(z)=z^{2}$ is 2-valently starlike in E. Therefore, from Lemma 3 and (4), we have that $f(z)$ is p-valent in E.

This completes our proof.

References

[1] A. W. Goodman: Univalent Functions. vol. 1, Mariner Publishing Company, Tampa, Florida (1983).
[2] K. Noshiro: On the theory of schlicht functions. J. Fac. Sci. Hokkaido Univ., (1) 2, 129-155 (1934-1935).
[3] M. Nunokawa: A note on multivalent functions. Tsukuba J. Math., vol. 13, no. 2 (1989) (to appear).
[4] -: On an estimate of the real part of $f(z) / z$ for the subclass of univalent functions. Math. Japonica, vol. 35, no. 3 (1990) (to appear).
[5] -: On the theory of multivalent functions. Tsukuba J. Math., vol. 11, no. 2, 273-286 (1987).
[6] S. Ozaki: On the theory of multivalent functions. Sci. Rep. Tokyo Bunrika Daigaku, Sec. A, 40, 167-188 (1935).
[7] S. Warschawski: On the higher derivatives of the boundary in conformal mapping. Trans. Amer. Math. Soc., 38, 310-340 (1935).

