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In the present note, we introduce two notions, i.e. finite type of inclu-
sion relation of von Neumann algebras and indicial derivative. The former
is a generalization of index finite type and entropy finite type. The latter
is a substitute of the index initiated by V. Jones [3] and extended by
H. Kosaki [6]. The aim of the present note is to report that the indicial
derivative produces both of the index and Pimsner-Popa’s entropy [7].

1. Let MN be a pair of yon Neumann algebras on a Hilbert space
H. The representation space H is assumed to be separable throughout the
present note. For the pair MN, let P(M, N) denote the set of all faithful
normal semifinite N-valued weights on M. Moreover, set P(M,N)=
{E e P(M, N)" at =id} and El(M, N)={E e PI(M, N)" E(1)=I). P(M, C)
[resp. E(M, C)] is often denoted by P(M) [resp. E(M)]. For each E e
P(M, N), let E denote the restriction of E to N’M and let E- denote the
tIaagerup correspondent o E, uniquely determined by the equation of spa-
tial derivative (( E)/)=(/( E-)) for e P(N) and e P(M’). For
more details, refer to [1], [2].

Lemma 1. Let MN be as above. Then, there exists E e E(M,N)
with (E-)c e PI(N’ M, Z(M)) if and only if E(M, N)= and EI(N’, M’)=/= .

When a pair MN of von Neumann algebras satisfies the conditions in
Lemma 1, we say that the inclusion relation R(M, N) is of finite type. Let
ET(M,N) denote the set of all pairs (E, r) where E e E(M, N) and r e
E(N’ M) such that r E =r. Then, if R(M, N) is of finite type, ET(M, N)
=/= , and or each (E, r) e ET(M, N), one can take E’ e E(N’, M’), uniquely
determined by the condition that r (E’) =r and we call it standard corre-
spondent of E w.r.t.r. In this case, a generalized Pedersen-Takesaki’s
derivative dE-/dE is well defined by dE-’/dE’=d(oE-)/d(oE’) for
e P(M’) because the derivative d( E-)/d( E’) does not depend on the

choice of e P(M’). Since this derivative dE-/dE is determined for (E, r) e
ET(M, N), we denote it by I(MIN)and we call it indicial derivative of E
w.r.t.r.

Lemma 2. Let MN be a pair of yon Neumann algebras such that
R(M, N) is of finite type. Then, for (E, r)e ET(M, N), the indicial deriva-
tive I(M[N) is a positive selfad]oint operator affiliated with the center
Z(N’ M) of N’M such that I(MIN)=d(r (E-)c)/dr 1.

2. For a pair MN of von Neumann algebras and E e E(M,N),
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index E E-(1) is defined as an extended positive element of Z(M), accord-
ing to Kosaki’s definition [6]. We note that, if Z(N’ M) C, E(M, N)
consists of a unique element E0 and indexEo=I(MIN) (r=E), which we
denote by [M" N] according to Jones’ notation. For a pair of finite yon

Neumann algebras with r e E(M), the relative entropy H(MIN) has been
defined by Pimsner-Popa [7], associated with E e E(M, N) such that r E=r.
They have obtained a remarkable result" H(M N)--log [M" N] for a pair
MN of type II factors with Z(N’ M)=C. The next theorem is a gener-
alization of this result.

Theorem :}. (i) Let MN be a pair of yon Neumann algebras. If
there exists E e E(M,N) such that index E e Z(M) /, then, R(M, N) is of
finite type. If R(M,N) is of finite type, then, for (E,r)eET(M,N),
index E=E’(I(M N)) where E’ is the standard correspondent of E w.r.t, r.

(ii) Let MN be a pair of on Neumann algebras of type II. If
H(MIN) + c for some r e E(M), R(M, N) is of finite type. If R(M, N) is

of finite type, then, for (E, r) e ET(M, N), H(M N) r(logI(M N)).
We note that it often occurs that index E c. 1 or H(MIN)= + c even

if R(M, N)is of finite type. Theorem 3 is of use in these cases too and we
observe rom this theorem that the indicial derivative I(MIN) works as a
kind of index of E e E(M, N) which contains more informations than the
original index or entropy. Moreover, several formulas on index and entropy
immediately follow from those of indicial derivative. As a remarkable ap-
plication, some answers can be afforded to the following problem" When
does the eluality H(MI N) =H(MIL)+H(LIN) hold true for an algebra L
such that M L N?

Corollary 4. LetMN be a pair of yon Neumann algebras of type II
with r e E(M).

(i) For such a yon Neumann algebra L that MLN, the followings
are equivalent in the case that H(M N)+ c.

(a) H(M N) H(M L)+H(L N).
(b) E’--E E for E e E(M, N), E e E(M, L) and E e E(L, N), all

of which are determined by keeping the trace r fixed.
(c) a’(L’)-- L’ for some e P(M’) and E e E(M, N) such that r E

(ii) If the algebra L is given by M A’ or N/A for a subalgebra A in
N’ M, H(M N) H(M L)+H(L N) holds true.

The statement (ii) of Theorem 3 leads us to define an abstract entropy
K(MIN)=r(log d(r E-)/dr) in a sense of extended operator calculus. The
proof of the statement (ii) has been done by checking the equality H(MIN)
--K(MIN) in each step o the reduction ([4], [5]). Its intrinsic proof will
be expected.

:. We shall describe some fundamental properties on finiteness of
R(M, N) and so on.

Proposition ;. Let MN be a pair of yon Neumann algebras.



No. 10] Index and Entropy 325

( ) The finiteness of R(M, N) does not depend on the representation
space.

(ii) R(M, N) is of finite type if and only if so is R(N’, M’). If this is
the case, for (E,r)eET(M,N), I(M]N)--I’(N’[M’) and K(MIN)--
K’(N’[M’).

(iii) When either M or N is a factor, R(M, N) is of finite type if and
only if N’M is atomic and [M :N] + oo for all atoms p e Z(N’ M).

(iv) If R(M, N)is of finite type, N’M must be a type I algebra of
finite type.

Proposition 6. (i) Let MN be a pair of yon Neumann algebras
such that N’M is atomic and let {e} [resp. (f}ez] denote the set of all
atoms of Z(M) [resp. Z(N)]. Then, we obtain, for (E, ) e ET(M, N),

I(M N) (r(e)r(fj) r(efj)2)IiJ(Me N)ef,
i,j

where (i, ]) runs over e,f:O, is the reduced normalized trace of , and

E e El(Mezj Neij) is given by
(ii) LetMN be a pair of factor-subfactor such that N’M is atomic

and let {P}e denote the set of all atoms of Z(N’ M). Then, we obtain,
for (E, r) e ET(M, N),

TI(M]N) , ([M" N] / (p))p.
kK

Corollary 7. Under the same situxtions as the above (i), (ii) respec-
tively, we get the following formulas.

( ) index E-- ((r(f)/r(ef)) index E)e
i,j

K(M N) {r(ef)K(Meij Ne)/ 2r/(r(efj))}
i,j

E r/(r(e))-- r/(r(f)),

where (t)=--tlogt for tO.
(ii) index E ([M Y,] r(p))

K(MIN) {r(p) log [M: Y,] + 2(r(p))}.

We remark that the equality (ii) on index E is a well-known local index
ormula as described in [3], [6] and the equality (ii) on K(MIN) is the same
ormula as that on H,(M] N). See Theorem 4.4 in [7].

The details of the present note will appear elsewhere.
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