80. Properties of Certain Integral Operator

By Shigeyoshi OwA*) and Ke HU**)
(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1989)

1. Introduction. Let \mathscr{A}_{n} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \quad(n \in \mathscr{N}=\{1,2,3, \cdots\}) \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disk $\mathcal{U}=\{z:|z|<1\}$.
A function $f(z)$ in the class \mathcal{A}_{n} is said to be a member of the class $\mathscr{I}_{n}(\alpha)$ if it satisfies

$$
\begin{equation*}
\left|\frac{f(z)}{z}-1\right|<1-\alpha \quad(z \in U) \tag{1.2}
\end{equation*}
$$

for some $\alpha(0 \leqq \alpha<1)$.
Let the functions $f(z)$ and $g(z)$ be analytic in the unit disk \mathcal{U}. Then the function $f(z)$ is said to be subordinate to $g(z)$ if there exists a function $w(z)$ analytic in U, with $w(0)=0$ and $|w(z)|<1(z \in U)$, such that

$$
\begin{equation*}
f(z)=g(w(z)) \quad(z \in \mathscr{U}) \tag{1.3}
\end{equation*}
$$

We denote this subordination by

$$
\begin{equation*}
f(z) \prec g(z) . \tag{1.4}
\end{equation*}
$$

In particular, if $g(z)$ is univalent in \mathcal{U}, then the subordination (1.4) is equivalent to $f(0)=g(0)$ and $f(\cup) \subset g(U)$ (cf. [2]).

This concept of subordination can be traced to Lindelöf [5], but Littlewood ([6], [7]) and Rogosinski ([10], [11]) introduced the term and discovered the basic properties.

For a function $f(z)$ belonging to the class \dot{A}_{n}, we define the generalized Libera integral operator J_{c} by

$$
\begin{equation*}
J_{c}(f(z))=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \quad(c \geqq 0) . \tag{1.5}
\end{equation*}
$$

The operator J_{c}, when $c \in \mathcal{I}$, was introduced by Bernardi [1]. In particular, the operator J_{1} was studied earlier by Libera [4] and Livingston [8].
2. Properties of the operator J_{c}. In order to derive our results, we have to recall here the following lemma due to Miller and Mocanu [9] (also Jack [3]).

Lemma. Let the function

$$
\begin{equation*}
w(z)=b_{n} z^{n}+b_{n+1} z^{n+1}+\cdots \quad(n \in \mathscr{N}) \tag{2.1}
\end{equation*}
$$

be regular in the unit disk \mathcal{U} with $w(z) \not \equiv 0(z \in \mathscr{U})$. If $z_{0}=r_{0} e^{i \theta_{0}}\left(r_{0}<1\right)$ and

$$
\begin{equation*}
\left|w\left(z_{0}\right)\right|=\max _{|z| \leq r_{0}}|w(z)|, \tag{2.2}
\end{equation*}
$$

then
*) Department of Mathematics, Kinki University, Higashi-Osaka, Osaka, Japan.
**) Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi, China.

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=m w\left(z_{0}\right), \tag{2.3}
\end{equation*}
$$

where m is real and $m \geqq n \geqq 1$.
Applying the above lemma, we prove
Theorem 1. If a function $f(z)$ defined by (1.1) is in the class $\mathcal{A}_{n}(\alpha)$, then

$$
\begin{equation*}
\frac{J_{c}(f(z))}{z} \prec 1+\frac{(1-\alpha) z}{n+1} . \tag{2.4}
\end{equation*}
$$

Proof. It is clear for $f(z) \equiv z(z \in \mathcal{U})$. Then we assume that $f(z) \not \equiv z$ $(z \in \mathcal{U})$. Define the function $w(z)$ by

$$
\begin{equation*}
\frac{J_{c}(f(z))}{z}=1+\frac{(1-\alpha) w(z)}{n+1} \tag{2.5}
\end{equation*}
$$

for $f(z) \in \mathcal{A}_{n}(\alpha)$, then we see that $w(z)=b_{n} z^{n}+b_{n+1} z^{n+1}+\cdots$ is regular in U and $w(z) \not \equiv 0(z \in U)$. Note that

$$
\begin{equation*}
\left(J_{c} f(z)\right)^{\prime}=-c \frac{J_{c}(f(z))}{z}+(c+1) \frac{f(z)}{z} . \tag{2.6}
\end{equation*}
$$

Therefore, if follows from (2.5) and (2.6) that

$$
\begin{equation*}
\frac{f(z)}{z}-1=\frac{1-\alpha}{n+1}\left(w(z)+\frac{z w^{\prime}(z)}{c+1}\right) \tag{2.7}
\end{equation*}
$$

Suppose that there exists a point $z_{0} \in \mathscr{U}$ such that

$$
\max _{|z| \leq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1 .
$$

Then, with the aid of Lemma, we have

$$
\begin{align*}
\left|\frac{f\left(z_{0}\right)}{z_{0}}-1\right| & =\frac{1-\alpha}{n+1}\left|w\left(z_{0}\right)+\frac{z_{0} w^{\prime}\left(z_{0}\right)}{c+1}\right| \tag{2.8}\\
& =\frac{1-\alpha}{n+1}\left(1+\frac{m}{c+1}\right) \geqq \frac{(1-\alpha)(n+c+1)}{(n+1)(c+1)} \geqq 1-\alpha,
\end{align*}
$$

which contradicts that $f(z) \in \mathcal{A}_{n}(\alpha)$. This shows that $|w(z)|<1$ for all $z \in \mathcal{U}$, that is, that

$$
\frac{J_{c}(f(z))}{z} \prec 1+\frac{(1-\alpha) z}{n+1} .
$$

Taking $c=0$ in Theorem 1, we have
Corollary 1. If $f(z) \in \mathcal{A}_{n}(\alpha)$, then

$$
\begin{equation*}
\frac{1}{z} \int_{0}^{z} \frac{f(t)}{t} d t<1+\frac{(1-\alpha) z}{n+1} \tag{2.9}
\end{equation*}
$$

Next, we have
Theorem 2. If a function $f(z)$ defined by (1.1) is in the class $\mathcal{A}_{n}(\alpha)$, then

$$
\begin{equation*}
\operatorname{Re}\left\{e^{i \beta} \frac{J_{c}(f(z))}{z}\right\}>0 \quad(z \in \mathcal{U}) \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
|\beta| \leqq \frac{\pi}{2}-\sin ^{-1}\left(\frac{1-\alpha}{n+1}\right) \tag{2.11}
\end{equation*}
$$

The bound of $|\beta|$ is best possible for the function $f(z)$ defined by

$$
\begin{equation*}
f(z)=z+\frac{(1-\alpha)(n+c+1)}{(n+1)(c+1)} z^{n+1} \tag{2.12}
\end{equation*}
$$

Proof. By virtue of Theorem 1, we see that

$$
\begin{equation*}
\left|\frac{J_{e}(f(z))}{z}-1\right|<\frac{1-\alpha}{n+1} \quad(z \in U) \tag{2.13}
\end{equation*}
$$

Therefore, it follows from (2.13) that

$$
\operatorname{Re}\left\{e^{i \beta} \frac{J_{c}(f(z))}{z}\right\}>0 \quad(z \in \mathscr{U})
$$

for

$$
|\beta| \leqq \frac{\pi}{2}-\sin ^{-1}\left(\frac{1-\alpha}{n+1}\right)
$$

Further, the bound of $|\beta|$ is best possible for the function $f(z) \in \mathcal{A}_{n}(\alpha)$ defined by

$$
\begin{equation*}
\frac{J_{c}(f(z))}{z}=1+\frac{(1-\alpha) z^{n}}{n+1} \tag{2.14}
\end{equation*}
$$

which is equivalent to (2.12).
Letting $c=0$ in Theorem 2, we have
Corollary 2. If $f(z) \in \mathcal{A}_{n}(\alpha)$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{e^{i \beta}}{z} \int_{0}^{z} \frac{f(t)}{t} d t\right\}>0 \quad(z \in \mathscr{U}) \tag{2.15}
\end{equation*}
$$

where

$$
|\beta| \leqq \frac{\pi}{2}-\sin ^{-1}\left(\frac{1-\alpha}{n+1}\right)
$$

The bound of $|\beta|$ is best possible for the function $f(z)$ defined by

$$
\begin{equation*}
f(z)=z+(1-\alpha) z^{n+1} . \tag{2.16}
\end{equation*}
$$

Acknowledgment. This research of the authors was completed at Jiangxi Normal University, Nanchang, Jiangxi, China while the first author was visiting from Kinki University, Higashi-Osaka, Osaka 577, Japan.

References

[1] S. D. Bernardi: Convex and starlike univalent functions. Trans. Amer. Math. Soc., 135, 429-446 (1969).
[2] P. L. Duren: Univalent Functions. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo (1983).
[3] I. S. Jack: Functions starlike and convex of order α. J. London Math. Soc., (2) 3, 469-474 (1971).
[4] R. J. Libera: Some classes of regular univalent functions. Proc. Amer. Math. Soc., 16, 755-758 (1965).
[5] E. Lindelöf: Mémoire sur certains inégalités dans la théorie des fonctions monogénes et sur quelques propriétés nouvelles de ces fonctions dans le voisinage d'un point singulier essentiel. Acta Soc. Fenn., 35, 1-35 (1909).
[6] J. E. Littlewood: On inequalities in the theory of functions. Proc. London Math. Soc., 23, 481-519 (1925).
[7] -: Lectures on the Theory of Functions. Oxford University Press, London (1944).
[8] A. E. Livingston: On the radius of univalence of certain analytic functions. Proc. Amer. Math. Soc., 17, 352-357 (1966).
[9] S. S. Miller and P. T. Mocanu: Second order differential inequalities in the complex plane. J. Math. Anal. Appl., 65, 289-305 (1978).
[10] W. Rogosinski: On subordinate functions. Proc. Cambridge Philos. Soc., 35, 1-26 (1939).
[11] --: On the coefficients of subordinate functions. Proc. London Math. Soc., 48, 48-82 (1943).

