78. A Nonlinear Ergodic Theorem for Asymptotically Nonexpansive Mappings in Banach Spaces

By Hirokazu Oka
Department of Mathematics, Waseda University

(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1989)

1. Introduction. Throughout this paper X denotes a uniformly convex real Banach space and C is a closed convex subset of X. The value of $x^{*} \in X^{*}$ at $x \in X$ will be denoted by $\left(x, x^{*}\right)$. The duality mapping J (multivalued) from X into X^{*} will be defined by $J(x)=\left\{x^{*} \in X^{*}:\left(x, x^{*}\right)=\|x\|^{2}\right.$ $\left.=\left\|x^{*}\right\|^{2}\right\}$ for $x \in X$. We say that X is (F) if the norm of X is Fréchet differentiable, i.e., for each $x \in X$ with $x \neq 0, \lim _{t \rightarrow 0} t^{-1}(\|x+t y\|-\|x\|)$ exists uniformly in $y \in B_{1}$, where $B_{r}=\{z \in X:\|z\| \leqq r\}$ for $r>0$. A mapping $T: C \rightarrow C$ is said to be asymptotically nonexpansive if for each $n=1,2, \ldots$

$$
\begin{equation*}
\left\|T^{n} x-T^{n} y\right\| \leqq\left(1+\alpha_{n}\right)\|x-y\| \quad \text { for any } x, y \in C \tag{1.1}
\end{equation*}
$$

where $\lim _{n \rightarrow \infty} \alpha_{n}=0$. In particular, if $\alpha_{n}=0$ for all $n \geqq 1, T$ is said to be nonexpansive. The set of fixed points of T will be denoted by $F(T)$.

Throughout the rest of this paper let $T: C \rightarrow C$ be an asymptotically nonexpansive mapping satisfying (1.1).
A sequence $\left\{x_{n}\right\}_{n \geqq 0}$ in C is called an almost-orbit of T if

$$
\lim _{n \rightarrow \infty}\left[\sup _{m \geq 0}\left\|x_{n+m}-T^{m} x_{n}\right\|\right]=0 .
$$

A sequence $\left\{z_{n}\right\}$ in X is said to be weakly almost convergent to $z \in X$ if

$$
w-\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} z_{k+i}=z
$$

uniformly in $i \geqq 0$.
The purpose of this paper is to prove the following (nonlinear) mean ergodic theorem which is an extension of [3, Theorem 1] and [1, Corollary 2.1].

Theorem. Let $\left\{x_{n}\right\}_{n \geqq 0}$ be an almost-orbit of T. If X is (F) and C is bounded, then $\left\{x_{n}\right\}$ is weakly almost convergent to the unique point of $F(T)$ $\cap \operatorname{clco} \omega_{w}\left(\left\{x_{n}\right\}\right)$, where $\omega_{w}\left(\left\{x_{n}\right\}\right)$ denotes the set of weak subsequential limits of $\left\{x_{n}\right\}$, and clco E is the closed convex hull of E.
2. Proof of Theorem. Throughout this section, we assume C is bounded. By Bruck's inequality [2, Theorem 2.1], we get

Lemma 1. There exists a strictly increasing, continuous, convex function $\gamma:[0, \infty) \rightarrow[0, \infty)$ with $\gamma(0)=0$ such that

$$
\begin{aligned}
& \left\|T^{k}\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right)-\sum_{i=1}^{n} \lambda_{i} T^{k} x_{i}\right\| \\
& \quad \leqq\left(1+\alpha_{k}\right) \gamma^{-1}\left(\max _{1 \leqq i, j \leqq n}\left[\left\|x_{i}-x_{j}\right\|-\frac{1}{1+\alpha_{k}}\left\|T^{k} x_{i}-T^{k} x_{j}\right\|\right]\right)
\end{aligned}
$$

for any $k, n \geqq 1$, any $\lambda_{1}, \cdots, \lambda_{n} \geqq 0$ with $\sum_{i=1}^{n} \lambda_{i}=1$ and any $x_{1}, \cdots, x_{n} \in C$.
Hereafter, let γ be as in Lemma 1. Now, we can easily prove
Lemma 2. Suppose that $\left\{x_{n}\right\}_{n \geqq 0}$ and $\left\{y_{n}\right\}_{n \geqq 0}$ are almost-orbits of T. Then $\left\{\left\|x_{n}-y_{n}\right\|\right\}$ converges as $n \rightarrow \infty$.

We now put $D=$ diameter C and $M=\sup _{n \geqq 1}\left(1+\alpha_{n}\right)$.
Lemma 3. Suppose that $\left\{x_{j}^{(p)}\right\}_{j \geq 1}(p=1,2, \ldots)$ are almost-orbits of T. Then for any $\varepsilon>0$ and $n \geqq 1$ there exist $N_{\varepsilon} \geqq 1$ and $i_{n}(\varepsilon) \geqq 1$, where N_{ε} is independent of n, such that $\left\|T^{k}\left(\sum_{p=1}^{n} \lambda_{p} x_{i}^{(p)}\right)-\sum_{p=1}^{n} \lambda_{p} T^{k} x_{i}^{(p)}\right\|<\varepsilon$ for any $k \geqq N_{\varepsilon}$, any $i \geqq i_{n}(\varepsilon)$, and any $\lambda_{1}, \cdots, \lambda_{n} \geqq 0$ with $\sum_{p=1}^{n} \lambda_{p}=1$.

Proof. For any $\varepsilon>0$ choose $\delta>0$ so that $\gamma^{-1}(\delta)<\varepsilon / M$. Then there exists $N_{\varepsilon} \geqq 1$ such that $\alpha_{k}<\delta / 4 D$ if $k \geqq N_{\varepsilon}$. Since $\left\{\left\|x_{j}^{(p)}-x_{j}^{(q)}\right\|\right\}_{j \geq 1}$ converges as $j \rightarrow \infty$ by Lemma 2 , for each $p, q \geqq 1$ there exists $i_{0}(\varepsilon, p, q) \geqq 1$ such that $\left\|x_{i}^{(p)}-x_{i}^{(q)}\right\|-\left\|x_{i+k}^{(p)}-x_{i+k}^{(q)}\right\|<\delta / 4$ if $i \geqq i_{0}(\varepsilon, p, q)$ and $k \geqq 0$. Moreover, there are $i_{1}(\varepsilon, p) \geqq 1$ such that $a_{i}^{(p)}<\delta / 4$ for all $i \geqq i_{1}(\varepsilon, p)$, where $a_{i}^{(p)}=\sup _{j \geqq 0} \| x_{i+j}^{(p)}-$ $T^{j} x_{i}^{(p)} \|$. Put $i_{n}(\varepsilon)=\max \left\{i_{0}(\varepsilon, p, q), i_{1}(\varepsilon, p): 1 \leqq p, q \leqq n\right\}$ for $n \geqq 1$. If $i \geqq i_{n}(\varepsilon)$ and $k \geqq N_{\varepsilon}$, then

$$
\begin{aligned}
& \left\|x_{i}^{(p)}-x_{i}^{(q)}\right\|-\frac{1}{1+\alpha_{k}}\left\|T^{k} x_{i}^{(p)}-T^{k} x_{i}^{(q)}\right\| \\
& \quad \leqq\left\|x_{i}^{(p)}-x_{i}^{(q)}\right\|-\left\|x_{i+k}^{(p)}-x_{i+k}^{(q)}\right\|+a_{i}^{(p)}+a_{i}^{(q)}+\alpha_{k}\left\|x_{i}^{(p)}-x_{i}^{(q)}\right\|<\delta
\end{aligned}
$$

for $1 \leqq p, q \leqq n$ and by Lemma 1, $\left\|T^{k}\left(\sum_{p=1}^{n} \lambda_{p} x_{2}^{(p)}\right)-\sum_{p=1}^{n} \lambda_{p} T^{k} x_{i}^{(p)}\right\|<\varepsilon$ for any $\lambda_{1}, \cdots, \lambda_{n} \geqq 0$ with $\sum_{p=1}^{n} \lambda_{p}=1$. Q.E.D.

For any $\varepsilon>0$ and $k \geqq 1$, we put $F_{\varepsilon}\left(T^{k}\right)=\left\{x \in C:\left\|T^{k} x-x\right\| \leqq \varepsilon\right\}$. Since C is bounded, $F(T) \neq \varnothing$. (For example, see [4, Proposition 2.3].)

Lemma 4. Suppose that $\left\{x_{i}\right\}_{i \geqq 0}$ is an almost-orbit of T. Then for any $\varepsilon>0$ there exists $N_{\varepsilon} \geqq 1$ such that for each $k \geqq N_{\varepsilon}$, there is $N_{k}\left(=N_{k}(\varepsilon)\right) \geqq 1$ satisfying $(1 / n) \sum_{i=0}^{n-1} x_{i+l} \in F_{\varepsilon}\left(T^{k}\right)$ for all $n \geqq N_{k}$ and all $l \geqq 0$.

Proof. Let $\varepsilon>0$ be arbitrarily given and σ be the inverse function of $t \mapsto M \gamma^{-1}(3 t)+t$. Put $\delta=\min \left\{\sigma(\varepsilon / 3),\left(\varepsilon / 3 M^{\prime} D\right)\right\}$ and $M^{\prime}=M+1$. Choose $\eta>0$ and $N_{1, \varepsilon} \geqq 1$ so that $\gamma^{-1}(\eta)<\left(\delta^{2} / 2 M\right)$ and $\alpha_{k}<\sigma(\varepsilon / 3) / D$ if $k \geqq N_{1, \varepsilon}$. Furthermore, by Lemma 3 , there exists $N_{2, \varepsilon} \geqq 1$ such that for any $p \geqq 1$ there is $i_{p}(\varepsilon) \geqq 1$ satisfying

$$
\begin{equation*}
\left\|T^{k}\left(\frac{1}{p} \sum_{j=0}^{p-1} x_{i+j+l}\right)-\frac{1}{p} \sum_{j=0}^{p-1} T^{k} x_{i+j+l}\right\|<\frac{\delta^{2}}{8} \tag{2.1}
\end{equation*}
$$

for any $k \geqq N_{2, \varepsilon}$, any $i \geqq i_{p}(\varepsilon)$, and any $l \geqq 0$. Put $N_{\varepsilon}=\max \left(N_{1, \varepsilon}, N_{2, \varepsilon}\right)$ and let $k \geqq N_{\varepsilon}$ be fixed. By Lemma 1 and the choice of δ, we get

$$
\begin{equation*}
\operatorname{clco} F_{\delta}\left(T^{k}\right) \subset F_{\varepsilon / 3}\left(T^{k}\right) \tag{2.2}
\end{equation*}
$$

Next, choose $p \geqq 1$ so that $(D k / p) \leqq\left(\delta^{2} / 2\right)$ and let p be fixed. Since $\left\{x_{i}\right\}_{i \geqq 0}$ is an almost-orbit of T, there exists $N \geqq 1$ such that if $m \geqq N$, $\sup _{q \geq 0} \| x_{m+q}-$ $T^{q} x_{m} \|<\left(\delta^{2} / 8\right)$. Set $w_{i}=(1 / p) \sum_{j=0}^{p-1} x_{i+j}$ for $i \geqq 0$. If $i \geqq i_{p}(\varepsilon)+N$, by (2.1),

$$
\begin{aligned}
\left\|w_{i+k+l}-T^{k} w_{i+l}\right\| \leqq & \left\|\frac{1}{p} \sum_{j=0}^{p-1}\left(x_{i+j+k+l}-T^{k} x_{i+j+l}\right)\right\| \\
& +\left\|\frac{1}{p} \sum_{j=0}^{p-1} T^{k} x_{i+j+l}-T^{k}\left(\frac{1}{p} \sum_{j=0}^{p-1} x_{i+j+l}\right)\right\|<\frac{\delta^{2}}{4}
\end{aligned}
$$

for all $l \geqq 0$. Choose $N_{3}(k) \geqq i_{p}(\varepsilon)+N+1$ such that $\left(D\left(i_{p}(\varepsilon)+N\right) / n\right)<\left(\delta^{2} / 4\right)$ for all $n \geqq N_{3}(k)$. If $n \geqq N_{3}(k)$, then

$$
\begin{align*}
& \frac{1}{n} \sum_{i=0}^{n-1}\left\|w_{i+l}-T^{k} w_{i+l}\right\| \leqq \frac{1}{n} \sum_{i=0}^{n-1}\left\|w_{i+l}-w_{i+k+l}\right\| \tag{2.3}\\
& \quad+\frac{1}{n}\left(\sum_{i=0}^{i_{p}+N-1}+\sum_{i=i_{p}+N}^{n-1}\right)\left\|w_{i+k+l}-T^{k} w_{i+l}\right\| \leqq \frac{D k}{p}+\frac{\left(i_{p}(\varepsilon)+N\right) D}{n}+\frac{\delta^{2}}{4} \leqq \delta^{2}
\end{align*}
$$

for all $l \geqq 0$, where $i_{p}=i_{p}(\varepsilon)$. Choose $N_{4}(k) \geqq 1$ so that $((p-1) D / 2 n)<\left(\varepsilon / 3 M^{\prime}\right)$ for all $n \geqq N_{4}(k)$. Put $N_{k}=\max \left(N_{3}(k), N_{4}(k)\right)$ and let $n \geqq N_{k}$ be fixed and $l \geqq 0$. Set $A(k, n, l)=\left\{i \in Z: 0 \leqq i \leqq n-1\right.$ and $\left.\left\|w_{i+l}-T^{k} w_{i+l}\right\| \geqq \delta\right\}$ and $B(k, n, l)=$ $\{0,1, \cdots, n-1\} \backslash A(k, n, l)$. By (2.3), \#A(k,n,l) $\leqq n \delta$ where \# denotes cardinality. Let $f \in F(T)$. Then,

$$
\begin{aligned}
\frac{1}{n} \sum_{i=0}^{n-1} x_{i+l}= & \frac{1}{n} \sum_{i=0}^{n-1} w_{i+l}+\frac{1}{n p} \sum_{i=1}^{p-1}(p-i)\left(x_{i+l-1}-x_{i+l+n-1}\right) \\
= & {\left[\frac{1}{n}(\# A(k, n, l)) \cdot f+\frac{1}{n} \sum_{i \in B(k, n, l)} w_{i+l}\right]+\left[\frac{1}{n} \sum_{i \in A(k, n, l)}\left(w_{i+l}-f\right)\right] } \\
& +\frac{1}{n p} \sum_{i=1}^{p-1}(p-i)\left(x_{i+l-1}-x_{i+l+n-1}\right) .
\end{aligned}
$$

The first term on the right side of the above equality is contained in $\operatorname{clco} F_{\delta}\left(T^{k}\right)$, and the rest term in $B_{2 \varepsilon / 3 M^{\prime}}$. By (2.2), we get ($1 / n$) $\sum_{i=0}^{n-1} x_{i+l} \in$ $F_{\varepsilon}\left(T^{k}\right)$ for all $l \geqq 0$.
Q.E.D.

Lemma 5. Let $\left\{x_{n}\right\}$ in C be such that $w-\lim _{n \rightarrow \infty} x_{n}=x$. Suppose that for any $\varepsilon>0$ there exists $N(\varepsilon) \geqq 1$ such that for $k \geqq N(\varepsilon)$ there is $N_{k}>0$ satisfying $\left\|T^{k} x_{n}-x_{n}\right\|<\varepsilon$ for all $n \geqq N_{k}$. Then $x \in F(T)$.

Proof. We shall show that $\lim _{k \rightarrow \infty}\left\|T^{k} x-x\right\|=0$. For any $\varepsilon>0$ choose $\delta>0$ so that $\gamma^{-1}(\delta)<(\varepsilon / 4 M)$ and take $N_{1}(\varepsilon) \geqq 1$ such that $\alpha_{k}<(\delta / 3 D)$ for all $k \geqq N_{1}(\varepsilon)$. Put $\delta^{\prime}=\min (\delta / 3, \varepsilon / 4)$. By the assumption, there exists $N(\varepsilon) \geqq 1$ such that for each $k \geqq N(\varepsilon)$ there is $N_{k}>0$ satisfying $\left\|T^{k} x_{n}-x_{n}\right\|<\delta^{\prime}$ for all $n \geqq$ N_{k}. Put $N_{2}(\varepsilon)=\max \left(N_{1}(\varepsilon), N(\varepsilon)\right)$ and let $k \geqq N_{2}(\varepsilon)$ be arbitrarily fixed. Since $x \in \operatorname{clco}\left\{x_{n} \mid n \geqq N_{k}\right\}$, there exists a sequence $\left\{\sum_{i=1}^{l_{n}} \lambda_{n}^{(i)} x_{\psi_{n}(i)}\right\} \subset \operatorname{co}\left\{x_{n} \mid n \geqq N_{k}\right\}$ such that $\lim _{n \rightarrow \infty} \sum_{i=1}^{l_{n}} \lambda_{n}^{(i)} x_{\psi_{n}(i)}=x$. Therefore there is $N_{3}(k) \geqq 1$ such that $\left\|\sum_{i=1}^{l_{n}} \lambda_{n}^{(i)} x_{\psi_{n}(i)}-x\right\|<(\varepsilon / 4 M)$ for all $n \geqq N_{3}(k)$ and hence if $n \geqq N_{3}(k), \| T^{k} x-$ $T^{k}\left(\sum_{i=1}^{l_{n}} \lambda_{n}^{(i)} x_{\psi_{n}(i)}\right) \|<(\varepsilon / 4)$. On the other hand, by Lemma 1 and the choice of δ and k, we get $\left\|T^{k}\left(\sum_{i=1}^{l_{n}} \lambda_{n}^{(i)} x_{\psi_{n}(i)}\right)-\sum_{i=1}^{l_{n}} \lambda_{n}^{(i)} T^{k} x_{\psi_{n}(i)}\right\|<(\varepsilon / 4)$ for all $n \geqq 1$. Consequently,

$$
\begin{aligned}
\left\|T^{k} x-x\right\| \leqq & \left\|T^{k} x-T^{k}\left(\sum_{i=1}^{l_{n}} \lambda_{n}^{(i)} x_{\psi_{n}(i)}\right)\right\|+\left\|T^{k}\left(\sum_{i=1}^{l_{n}} \lambda_{n}^{(i)} x_{\psi_{n}(i)}\right)-\sum_{i=1}^{l_{n}} \lambda_{n}^{(i)} T^{k} x_{\psi_{n}(i)}\right\| \\
& +\left\|\sum_{i=1}^{l_{n}} \lambda_{n}^{(i)}\left(T^{k} x_{\psi_{n}(i)}-x_{\psi_{n}(i)}\right)\right\|+\left\|\sum_{i=1}^{l_{n}} \lambda_{n}^{(i)} x_{\psi_{n}(i)}-x\right\|<\varepsilon
\end{aligned}
$$

where $n \geqq N_{3}(k)$. This shows that $\left\|T^{k} x-x\right\|<\varepsilon$ for $k \geqq N_{2}(\varepsilon)$. Q.E.D.
Lemma 6. Suppose that X is (F) and $\left\{x_{n}\right\}$ is an almost-orbit of T. Then, the following hold:
(i) $\left\{\left(x_{n}, J(f-g)\right)\right\}$ converges for every $f, g \in F(T)$.
(ii) $\quad F(T) \cap \operatorname{clco} \omega_{w}\left(\left\{x_{n}\right\}\right)$ is at most a singleton.

Proof. Let $\lambda \in(0,1)$ and $f, g \in F(T)$. By Lemma 3, for any $\varepsilon>0$ there exist $N_{\varepsilon} \geqq 1$ and $i_{2}(\varepsilon) \geqq 1$ such that if $k \geqq N_{\varepsilon}$ and $n \geqq i_{2}(\varepsilon)$, then $\| T^{k}\left(\lambda x_{n}+(1-\lambda) f\right)$ $-\lambda T^{k} x_{n}-(1-\lambda) f \|<\varepsilon$. Since $\left\|\lambda x_{n+m}+(1-\lambda) f-g\right\| \leqq \lambda\left\|x_{n+m}-T^{m} x_{n}\right\|+\| T^{m}\left(\lambda x_{n}\right.$ $+(1-\lambda) f)-\lambda T^{m} x_{n}-(1-\lambda) f\left\|+\left(1+\alpha_{m}\right)\right\| \lambda x_{n}+(1-\lambda) f-g\|\leqq \lambda\| x_{n+m}-T^{m} x_{n} \|+\varepsilon$ $+\left(1+\alpha_{m}\right)\left\|\lambda x_{n}+(1-\lambda) f-g\right\|$ for $m \geqq N_{\varepsilon}$ and $n \geqq i_{2}(\varepsilon)$, $\left\{\left\|\lambda x_{n}+(1-\lambda) f-g\right\|\right\}$ converges. The rest of proof is the same as [5, Lemma 3.6].
Q.E.D.

Proof of Theorem. Let $\rho(n)$ be any sequence of nonnegative integers, and put $s_{n}=(1 / n) \sum_{i=0}^{n-1} x_{i+\rho(n)}$. It suffices to show that $\left\{s_{n}\right\}$ converges weakly to a point of $F(T) \cap \operatorname{clco} \omega_{w}\left(\left\{x_{n}\right\}\right)$. First, note $\omega_{w}\left(\left\{s_{n}\right\}\right) \neq \varnothing$ because $\left\{s_{n}\right\}$ is bounded. Next, Lemmas 4 and 5 imply $\omega_{w}\left(\left\{s_{n}\right\}\right) \subset F(T)$. Moreover $\omega_{w}\left(\left\{s_{n}\right\}\right)$ $\subset \cap_{i=0}^{\infty} \operatorname{clco}\left\{x_{k}: k \geqq i\right\}=\operatorname{clco} \omega_{w}\left(\left\{x_{n}\right\}\right)$. Thus we have $\phi \neq \omega_{w}\left(\left\{s_{n}\right\}\right) \subset F(T)$ $\cap \operatorname{clco} \omega_{w}\left(\left\{x_{n}\right\}\right)$. Combining this with Lemma 6 -(ii), we obtain that $\omega_{w}\left(\left\{s_{n}\right\}\right)$ is a singleton and is equal to $F(T) \cap \operatorname{clco} \omega_{w}\left(\left\{x_{n}\right\}\right)$.
Q.E.D.

Remarks. 1) The assumption " C is bounded" in Theorem may be replaced by " $F(T) \neq \varnothing$ ".
2) Similarly we can prove the mean ergodic theorem for an asymptotically nonexpansive semigroup.

In the same way as the proof of [1, Theorem 3.1], by virtue of Theorem, we get the following which improves upon [6, Corollary 3].

Corollary. Suppose that X is (F) and $\left\{x_{n}\right\}$ is an almost-orbit of T. $\left\{x_{n}\right\}$ is weakly convergent to a fixed point of T if and only if $F(T) \neq \varnothing$ and $w-\lim _{n \rightarrow \infty}\left(x_{n}-x_{n+1}\right)=0$.

Acknowledgements. The author wishes to express his hearty thanks to Prof. I. Miyadera and Mr. N. Tanaka for many kind suggestions and advice.

References

[1] R. E. Bruck: Israel J. Math., 32, 107-116 (1979).
[2] ——: ibid., 38, 304-314 (1981).
[3] N. Hirano and W. Takahashi: Kodai Math. J., 2, 11-25 (1979).
[4] I. Miyadera: Sci. Res. School of Education Waseda Univ., 28, 13-21 (1979).
[5] I. Miyadera and K. Kobayasi: Nonlinear Analysis, 6, 349-365 (1982).
[6] G. B. Passty: Proc. Amer. Math. Soc., 84, 212-216 (1982).

