78. A Nonlinear Ergodic Theorem for Asymptotically Nonexpansive Mappings in Banach Spaces

By Hirokazu OKA

Department of Mathematics, Waseda University

(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1989)

1. Introduction. Throughout this paper X denotes a uniformly convex real Banach space and C is a closed convex subset of X. The value of $x^* \in X^*$ at $x \in X$ will be denoted by (x, x^*) . The duality mapping J (multivalued) from X into X* will be defined by $J(x) = \{x^* \in X^* : (x, x^*) = ||x||^2 = ||x^*||^2\}$ for $x \in X$. We say that X is (F) if the norm of X is Fréchet differentiable, i.e., for each $x \in X$ with $x \neq 0$, $\lim_{t \to 0} t^{-1}(||x + ty|| - ||x||)$ exists uniformly in $y \in B_1$, where $B_r = \{z \in X : ||z|| \leq r\}$ for r > 0. A mapping $T : C \to C$ is said to be asymptotically nonexpansive if for each $n = 1, 2, \cdots$

(1.1) $||T^n x - T^n y|| \leq (1 + \alpha_n) ||x - y||$ for any $x, y \in C$, where $\lim_{n \to \infty} \alpha_n = 0$. In particular, if $\alpha_n = 0$ for all $n \geq 1$, T is said to be nonexpansive. The set of fixed points of T will be denoted by F(T).

Throughout the rest of this paper let $T: C \rightarrow C$ be an asymptotically nonexpansive mapping satisfying (1.1).

A sequence $\{x_n\}_{n\geq 0}$ in C is called an *almost-orbit* of T if

$$\lim_{n \to \infty} [\sup_{m \ge 0} \|x_{n+m} - T^m x_n\|] = 0.$$

A sequence $\{z_n\}$ in X is said to be *weakly almost convergent* to $z \in X$ if

$$w - \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} z_{k+i} = z$$

uniformly in $i \ge 0$.

The purpose of this paper is to prove the following (nonlinear) mean ergodic theorem which is an extension of [3, Theorem 1] and [1, Corollary 2.1].

Theorem. Let $\{x_n\}_{n\geq 0}$ be an almost-orbit of T. If X is (F) and C is bounded, then $\{x_n\}$ is weakly almost convergent to the unique point of F(T) $\cap \operatorname{clco} \omega_w(\{x_n\})$, where $\omega_w(\{x_n\})$ denotes the set of weak subsequential limits of $\{x_n\}$, and cloo E is the closed convex hull of E.

2. Proof of Theorem. Throughout this section, we assume C is bounded. By Bruck's inequality [2, Theorem 2.1], we get

Lemma 1. There exists a strictly increasing, continuous, convex function $\tilde{\gamma}: [0, \infty) \rightarrow [0, \infty)$ with $\tilde{\gamma}(0) = 0$ such that

$$\begin{split} \left\| T^k \left(\sum_{i=1}^n \lambda_i x_i \right) - \sum_{i=1}^n \lambda_i T^k x_i \right\| \\ & \leq (1+\alpha_k) \gamma^{-1} \left(\max_{1 \leq i, j \leq n} \left[\|x_i - x_j\| - \frac{1}{1+\alpha_k} \|T^k x_i - T^k x_j\| \right] \right) \end{split}$$

No. 8]

for any k, $n \ge 1$, any $\lambda_1, \dots, \lambda_n \ge 0$ with $\sum_{i=1}^n \lambda_i = 1$ and any $x_1, \dots, x_n \in C$. Hereafter, let γ be as in Lemma 1. Now, we can easily prove

Lemma 2. Suppose that $\{x_n\}_{n\geq 0}$ and $\{y_n\}_{n\geq 0}$ are almost-orbits of T. Then $\{\|x_n - y_n\|\}$ converges as $n \to \infty$.

We now put D = diameter C and $M = \sup_{n \ge 1} (1 + \alpha_n)$.

Lemma 3. Suppose that $\{x_{j}^{(p)}\}_{j\geq 1}$ $(p=1,2,\cdots)$ are almost-orbits of T. Then for any $\varepsilon > 0$ and $n \ge 1$ there exist $N_{\varepsilon} \ge 1$ and $i_n(\varepsilon) \ge 1$, where N_{ε} is independent of n, such that $||T^k(\sum_{p=1}^n \lambda_p x_i^{(p)}) - \sum_{p=1}^n \lambda_p T^k x_i^{(p)}|| < \varepsilon$ for any $k \ge N_{\varepsilon}$, any $i \ge i_n(\varepsilon)$, and any $\lambda_1, \cdots, \lambda_n \ge 0$ with $\sum_{p=1}^n \lambda_p = 1$.

Proof. For any $\varepsilon > 0$ choose $\delta > 0$ so that $\gamma^{-1}(\delta) < \varepsilon/M$. Then there exists $N_{\varepsilon} \ge 1$ such that $\alpha_k < \delta/4D$ if $k \ge N_{\varepsilon}$. Since $\{\|x_j^{(p)} - x_j^{(q)}\|\}_{j \ge 1}$ converges as $j \to \infty$ by Lemma 2, for each p, $q \ge 1$ there exists $i_0(\varepsilon, p, q) \ge 1$ such that $\|x_i^{(p)} - x_i^{(q)}\| - \|x_{i+k}^{(p)} - x_{i+k}^{(q)}\| < \delta/4$ if $i \ge i_0(\varepsilon, p, q)$ and $k \ge 0$. Moreover, there are $i_1(\varepsilon, p) \ge 1$ such that $a_i^{(p)} < \delta/4$ for all $i \ge i_1(\varepsilon, p)$, where $a_i^{(p)} = \sup_{j \ge 0} \|x_{i+j}^{(p)} - T^j x_i^{(p)}\|$. Put $i_n(\varepsilon) = \max\{i_0(\varepsilon, p, q), i_1(\varepsilon, p): 1 \le p, q \le n\}$ for $n \ge 1$. If $i \ge i_n(\varepsilon)$ and $k \ge N_{\varepsilon}$, then

$$\|x_{i}^{(p)} - x_{i}^{(q)}\| - \frac{1}{1 + \alpha_{k}} \|T^{k}x_{i}^{(p)} - T^{k}x_{i}^{(q)}\|$$

 $\leq \|x_i^{(p)} - x_i^{(q)}\| - \|x_{i+k}^{(p)} - x_{i+k}^{(q)}\| + a_i^{(p)} + a_i^{(q)} + \alpha_k \|x_i^{(p)} - x_i^{(q)}\| < \delta$ for $1 \leq p, q \leq n$ and by Lemma 1, $\|T^k(\sum_{p=1}^n \lambda_p x_i^{(p)}) - \sum_{p=1}^n \lambda_p T^k x_i^{(p)}\| < \varepsilon$ for any $\lambda_1, \dots, \lambda_n \geq 0$ with $\sum_{p=1}^n \lambda_p = 1$. Q.E.D.

For any $\varepsilon > 0$ and $k \ge 1$, we put $F_{\varepsilon}(T^k) = \{x \in C : ||T^k x - x|| \le \varepsilon\}$. Since C is bounded, $F(T) \ne \emptyset$. (For example, see [4, Proposition 2.3].)

Lemma 4. Suppose that $\{x_i\}_{i\geq 0}$ is an almost-orbit of T. Then for any $\varepsilon > 0$ there exists $N_{\varepsilon} \geq 1$ such that for each $k \geq N_{\varepsilon}$, there is $N_k(=N_k(\varepsilon)) \geq 1$ satisfying $(1/n) \sum_{i=0}^{n-1} x_{i+i} \in F_{\varepsilon}(T^k)$ for all $n \geq N_k$ and all $l \geq 0$.

Proof. Let $\varepsilon > 0$ be arbitrarily given and σ be the inverse function of $t \mapsto M\gamma^{-1}(3t) + t$. Put $\delta = \min \{\sigma(\varepsilon/3), (\varepsilon/3M'D)\}$ and M' = M + 1. Choose $\eta > 0$ and $N_{1,\varepsilon} \ge 1$ so that $\gamma^{-1}(\eta) < (\delta^2/2M)$ and $\alpha_k < \sigma(\varepsilon/3)/D$ if $k \ge N_{1,\varepsilon}$. Furthermore, by Lemma 3, there exists $N_{2,\varepsilon} \ge 1$ such that for any $p \ge 1$ there is $i_p(\varepsilon) \ge 1$ satisfying

(2.1)
$$\left\| T^{k} \left(\frac{1}{p} \sum_{j=0}^{p-1} x_{i+j+l} \right) - \frac{1}{p} \sum_{j=0}^{p-1} T^{k} x_{i+j+l} \right\| < \frac{\delta^{2}}{8}$$

for any $k \ge N_{2,\varepsilon}$, any $i \ge i_p(\varepsilon)$, and any $l \ge 0$. Put $N_{\varepsilon} = \max(N_{1,\varepsilon}, N_{2,\varepsilon})$ and let $k \ge N_{\varepsilon}$ be fixed. By Lemma 1 and the choice of δ , we get

(2.2)
$$\operatorname{clco} F_{\delta}(T^k) \subset F_{\varepsilon/3}(T^k).$$

Next, choose $p \ge 1$ so that $(Dk/p) \le (\delta^2/2)$ and let p be fixed. Since $\{x_i\}_{i\ge 0}$ is an almost-orbit of T, there exists $N \ge 1$ such that if $m \ge N$, $\sup_{q\ge 0} ||x_{m+q} - T^q x_m|| < (\delta^2/8)$. Set $w_i = (1/p) \sum_{j=0}^{p-1} x_{i+j}$ for $i\ge 0$. If $i\ge i_p(\varepsilon) + N$, by (2.1),

$$\begin{split} \|w_{i+k+l} - T^{k}w_{i+l}\| &\leq \left\|\frac{1}{p}\sum_{j=0}^{p-1} \left(x_{i+j+k+l} - T^{k}x_{i+j+l}\right)\right\| \\ &+ \left\|\frac{1}{p}\sum_{j=0}^{p-1} T^{k}x_{i+j+l} - T^{k}\left(\frac{1}{p}\sum_{j=0}^{p-1} x_{i+j+l}\right)\right\| < \frac{\delta^{2}}{4} \end{split}$$

Н. ОКА

for all $l \ge 0$. Choose $N_{\mathfrak{z}}(k) \ge i_p(\varepsilon) + N + 1$ such that $(D(i_p(\varepsilon) + N)/n) < (\delta^2/4)$ for all $n \ge N_{\mathfrak{z}}(k)$. If $n \ge N_{\mathfrak{z}}(k)$, then

$$(2.3) \quad \frac{1}{n} \sum_{i=0}^{n-1} \|w_{i+i} - T^k w_{i+i}\| \leq \frac{1}{n} \sum_{i=0}^{n-1} \|w_{i+i} - w_{i+k+i}\| \\ + \frac{1}{n} \left(\sum_{i=0}^{i_p+N-1} + \sum_{i=i_p+N}^{n-1} \right) \|w_{i+k+i} - T^k w_{i+i}\| \leq \frac{Dk}{p} + \frac{(i_p(\varepsilon) + N)D}{n} + \frac{\delta^2}{4} \leq \delta^2$$

for all $l \ge 0$, where $i_p = i_p(\varepsilon)$. Choose $N_4(k) \ge 1$ so that $((p-1)D/2n) < (\varepsilon/3M')$ for all $n \ge N_4(k)$. Put $N_k = \max(N_3(k), N_4(k))$ and let $n \ge N_k$ be fixed and $l \ge 0$. Set $A(k, n, l) = \{i \in \mathbb{Z} : 0 \le i \le n-1 \text{ and } ||w_{i+1} - T^k w_{i+1}|| \ge \delta\}$ and $B(k, n, l) = \{0, 1, \dots, n-1\} \setminus A(k, n, l)$. By (2.3), $\# A(k, n, l) \le n\delta$ where # denotes cardinality. Let $f \in F(T)$. Then,

$$\frac{1}{n} \sum_{i=0}^{n-1} x_{i+i} = \frac{1}{n} \sum_{i=0}^{n-1} w_{i+i} + \frac{1}{np} \sum_{i=1}^{p-1} (p-i)(x_{i+i-1} - x_{i+i+n-1})$$

$$= \left[\frac{1}{n} (\#A(k, n, l)) \cdot f + \frac{1}{n} \sum_{i \in B(k, n, l)} w_{i+i}\right] + \left[\frac{1}{n} \sum_{i \in A(k, n, l)} (w_{i+i} - f)\right]$$

$$+ \frac{1}{np} \sum_{i=1}^{p-1} (p-i)(x_{i+i-1} - x_{i+i+n-1}).$$

The first term on the right side of the above equality is contained in $\operatorname{clco} F_{\delta}(T^k)$, and the rest term in $B_{2\varepsilon/3M'}$. By (2.2), we get $(1/n) \sum_{i=0}^{n-1} x_{i+i} \in F_{\varepsilon}(T^k)$ for all $l \ge 0$. Q.E.D.

Lemma 5. Let $\{x_n\}$ in C be such that $w - \lim_{n \to \infty} x_n = x$. Suppose that for any $\varepsilon > 0$ there exists $N(\varepsilon) \ge 1$ such that for $k \ge N(\varepsilon)$ there is $N_k > 0$ satisfying $||T^kx_n - x_n|| < \varepsilon$ for all $n \ge N_k$. Then $x \in F(T)$.

Proof. We shall show that $\lim_{k\to\infty} ||T^kx-x||=0$. For any $\varepsilon > 0$ choose $\delta > 0$ so that $\gamma^{-1}(\delta) < (\varepsilon/4M)$ and take $N_1(\varepsilon) \ge 1$ such that $\alpha_k < (\delta/3D)$ for all $k \ge N_1(\varepsilon)$. Put $\delta' = \min(\delta/3, \varepsilon/4)$. By the assumption, there exists $N(\varepsilon) \ge 1$ such that for each $k \ge N(\varepsilon)$ there is $N_k > 0$ satisfying $||T^kx_n - x_n|| < \delta'$ for all $n \ge N_k$. Put $N_2(\varepsilon) = \max(N_1(\varepsilon), N(\varepsilon))$ and let $k \ge N_2(\varepsilon)$ be arbitrarily fixed. Since $x \in \operatorname{clco} \{x_n \mid n \ge N_k\}$, there exists a sequence $\{\sum_{i=1}^{l_n} \lambda_n^{(i)} x_{\psi_n(i)}\} \subset \operatorname{co} \{x_n \mid n \ge N_k\}$ such that $\lim_{n\to\infty} \sum_{i=1}^{l_n} \lambda_n^{(i)} x_{\psi_n(i)} = x$. Therefore there is $N_3(k) \ge 1$ such that $||\sum_{i=1}^{l_n} \lambda_n^{(i)} x_{\psi_n(i)} - x|| < (\varepsilon/4M)$ for all $n \ge N_3(k)$ and hence if $n \ge N_3(k)$, $||T^kx - T^k(\sum_{i=1}^{l_n} \lambda_n^{(i)} x_{\psi_n(i)})|| < (\varepsilon/4)$. On the other hand, by Lemma 1 and the choice of δ and k, we get $||T^k(\sum_{i=1}^{l_n} \lambda_n^{(i)} x_{\psi_n(i)}) - \sum_{i=1}^{l_n} \lambda_n^{(i)} T^k x_{\psi_n(i)}|| < (\varepsilon/4)$ for all $n \ge 1$. Consequently,

$$\|T^{k}x - x\| \leq \left\|T^{k}x - T^{k}\left(\sum_{i=1}^{l_{n}} \lambda_{n}^{(i)} x_{\psi_{n}(i)}\right)\right\| + \left\|T^{k}\left(\sum_{i=1}^{l_{n}} \lambda_{n}^{(i)} x_{\psi_{n}(i)}\right) - \sum_{i=1}^{l_{n}} \lambda_{n}^{(i)} T^{k} x_{\psi_{n}(i)}\right\| \\ + \left\|\sum_{i=1}^{l_{n}} \lambda_{n}^{(i)} (T^{k} x_{\psi_{n}(i)} - x_{\psi_{n}(i)})\right\| + \left\|\sum_{i=1}^{l_{n}} \lambda_{n}^{(i)} x_{\psi_{n}(i)} - x\right\| < \varepsilon,$$

where $n \ge N_{3}(k)$. This shows that $||T^{k}x - x|| < \varepsilon$ for $k \ge N_{2}(\varepsilon)$. Q.E.D.

Lemma 6. Suppose that X is (F) and $\{x_n\}$ is an almost-orbit of T. Then, the following hold:

- (i) $\{(x_n, J(f-g))\}$ converges for every $f, g \in F(T)$.
- (ii) $F(T) \cap \operatorname{clco} \omega_w(\{x_n\})$ is at most a singleton.

Proof. Let $\lambda \in (0, 1)$ and $f, g \in F(T)$. By Lemma 3, for any $\varepsilon > 0$ there exist $N_{\varepsilon} \ge 1$ and $i_2(\varepsilon) \ge 1$ such that if $k \ge N_{\varepsilon}$ and $n \ge i_2(\varepsilon)$, then $||T^k(\lambda x_n + (1-\lambda)f) - \lambda T^k x_n - (1-\lambda)f|| < \varepsilon$. Since $||\lambda x_{n+m} + (1-\lambda)f - g|| \le \lambda ||x_{n+m} - T^m x_n|| + ||T^m(\lambda x_n + (1-\lambda)f) - \lambda T^m x_n - (1-\lambda)f|| + (1+\alpha_m) ||\lambda x_n + (1-\lambda)f - g|| \le \lambda ||x_{n+m} - T^m x_n|| + \varepsilon + (1+\alpha_m) ||\lambda x_n + (1-\lambda)f - g||$ for $m \ge N_{\varepsilon}$ and $n \ge i_2(\varepsilon)$, $\{||\lambda x_n + (1-\lambda)f - g||\}$ converges. The rest of proof is the same as [5, Lemma 3.6]. Q.E.D.

Proof of Theorem. Let $\rho(n)$ be any sequence of nonnegative integers, and put $s_n = (1/n) \sum_{i=0}^{n-1} x_{i+\rho(n)}$. It suffices to show that $\{s_n\}$ converges weakly to a point of $F(T) \cap \operatorname{clco} \omega_w(\{x_n\})$. First, note $\omega_w(\{s_n\}) \neq \emptyset$ because $\{s_n\}$ is bounded. Next, Lemmas 4 and 5 imply $\omega_w(\{s_n\}) \subset F(T)$. Moreover $\omega_w(\{s_n\}) \subset \cap_{i=0}^{\infty} \operatorname{clco} \{x_k : k \ge i\} = \operatorname{clco} \omega_w(\{x_n\})$. Thus we have $\phi \neq \omega_w(\{s_n\}) \subset F(T)$ $\cap \operatorname{clco} \omega_w(\{x_n\})$. Combining this with Lemma 6-(ii), we obtain that $\omega_w(\{s_n\})$ is a singleton and is equal to $F(T) \cap \operatorname{clco} \omega_w(\{x_n\})$. Q.E.D.

Remarks. 1) The assumption "C is bounded" in Theorem may be replaced by " $F(T) \neq \emptyset$ ".

2) Similarly we can prove the mean ergodic theorem for an asymptotically nonexpansive semigroup.

In the same way as the proof of [1, Theorem 3.1], by virtue of Theorem, we get the following which improves upon [6, Corollary 3].

Corollary. Suppose that X is (F) and $\{x_n\}$ is an almost-orbit of T. $\{x_n\}$ is weakly convergent to a fixed point of T if and only if $F(T) \neq \emptyset$ and $w - \lim_{n \to \infty} (x_n - x_{n+1}) = 0$.

Acknowledgements. The author wishes to express his hearty thanks to Prof. I. Miyadera and Mr. N. Tanaka for many kind suggestions and advice.

References

- [1] R. E. Bruck: Israel J. Math., 32, 107-116 (1979).
- [2] ——: ibid., **38**, 304–314 (1981).
- [3] N. Hirano and W. Takahashi: Kodai Math. J., 2, 11-25 (1979).
- [4] I. Miyadera: Sci. Res. School of Education Waseda Univ., 28, 13-21 (1979).
- [5] I. Miyadera and K. Kobayasi: Nonlinear Analysis, 6, 349-365 (1982).
- [6] G. B. Passty: Proc. Amer. Math. Soc., 84, 212–216 (1982).