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1. Outline. Let G be a noncompact connected semi-simple Lie group
of rank i with finite center, and F its cofinite discrete subgroup. For such
pairs of G and F, the Selberg theory is constructed. If we put K to be
maximal compact subgroup of G, then M :=F\G/K is a Riemannian
manifold and the Laplacian 1 over L(M) is defined. For compact M, S.
Minakshisundaram and /. Pleijel prove the regularity of the spectral zet
function of z at the origin, by which we can define the determinant of
When F is torsion-free and cocompact, A. Voros and P. Sarnak show that
the Selberg zeta function with local factor is expressed as the determinant
of z and calculate the local factor explicitly. We will generalize this type
of determinant expression for more general G and F. Generally, torsion
subgroups of/ cause new local factors of the Selberg zeta function. More-
over, when F is not cocompact, that is, M is not compact, the continuous
spectrum appears and contributes to the determinant of z/. In the follow-
ing sections, we generalize the theorem of Minakshisundaram-Pleijel to
some noncompact cases, and give explicit forms of all the local factors of
the Selberg zeta function and the contribution of the continuous spectrum.

2. The general program. Let 0--0<_<_... be the eigen values
of z/. We induce the spectral zeta function generalized by a real variable
s> 2p0 (w, s, ) ::0 (-- s(2p0-- s)) -’, for the purpose of expressing the
Selberg zeta function. Here p0 is the constant depending on G, which is
defined in [1, p. 4]. For examining poles of (w,s,), we use the trace
formula of Selberg in the form of general case (Gangolli-Warner [1]).
Taking the test function h(r+p) "-exp(-(r+(S-po))t) (tO), the trace
formula has the form

( 1 ) exp(--(]--s(2po--S))t)=I(t)+E(t)+H(t)+P(t)--Trc(t)
n=0

whose right side has the terms of identity, elliptic, hyperbolic and parabolic
conjugacy classes, and the removed trace of the continuous spectrum. The
Mellin transformation shows that the behavior of (1) as t-0 determines the
poles of (w, s, ). Indeed, the behavior t (resp. t log t) causes the simple
(resp. double) pole at w=--a of the function F(w)(w, s, zl). Studying ech
term in (1), the main difficulty is the treatment of Trc. It has the form

( 2 ) Trc (t) =--(4)- h(r+p)(9’/9)(po+ir)dr+4-1 lim tr (s)h(p),
d-



No. 8] The Selberg Zeta Function 281

where (s) is the scattering matrix and (s) det (s). When G--SL(2, R),
A. B. Venkov proves that (s) can be written in the orm (s)=
(/-F(s--(1/2))F(s)-9l(s), where k is the number of cusps and l(s) is an
absolutely convergent Dirichlet series (Re(s))1). Using this identity, we
have in (2),
( 3 ) (’/)(po+ir)--k((F’/F)(po--(1/2)/ir)--(F’/F)(po/ir))/(l’/1)(po+ir).
We can apply the method of Kurokawa [5] treating the gamma-factors,
which produce double poles of (w,s, 2) at w=(1/2)-n (n=0,1,2,...).
But as for the last term in (3), we can do little for lack of properties of the
function l(s). In the following section, we treat the case when Venkov’s
type of expression is valid and l(s) can be written explicitly. In those cases,
it is proved that (w, s, 2) is regular at w--0. Let det (, s) be the determi-
nant composed of eigenvalues "n--S(2po--S) instead of 2 and the correspond-
ing continuous spectrum explained below. Assuming the regularity of
(w,s, )at w-0, the contribution to det(,s) of the discrete spectrum is
defined by

(4) det (A, s)=det (A-s(2po-S)) "=exp -w=0
Formally, it is I%0 (n--8(2[o--8))" For defining the contribution of the
continuous spectrum and connecting with the Selberg zeta unction, we in-
duce an equation

( 5 ) d d o X(s)= Y(s),
ds 2(s--p0) ds ds

where Y(s) is a term in the trace ormula, taking another test unction
h(r + p) (r / (s-- po)) (r / fi) (} O, s> 2p0).

Then rom the above definition o det, i Y(s)==0 h(), the solution of
(5) is X(s)=det. (z/-s(2po-S)). So symmetrically, we define the continuous
part det (/,s) by the solution of (5) with Y=Trc. Next we put Y=H. A
little calculation shows that the solution of (5) is nothing but the Selberg
zeta unction Z(s). We obtain its local actors by solving (5) with Y---
I, E, P. Putting the solutions to be Z, Z and Z, we have determinant
expression of Z(s);
( 6 ) Z(s)=ec-c’(-) det (z/, s),
where Z "=Z.Z.Z.Z, det "---det.detc, and c, c’ are constants depending
on G and F.

:. txamples. In this section we fulfill the above program for two
special cases

Case I" G=SL2(R), F--F(N) (i--0, 1, 2), p0=l/2,
Case II" G=SL2(C), F=SL2(OF), p0=l,

where F(N)is the principal congruence subgroup o level N, and F is an
imaginary quadratic field satisfying F:/:Q(/I), Q(/-3), with its integer
ring O.

Theorem 1. Under the situation of Case I (resp. II), the spectral zeta
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function (w, s, 2) has the analytic continuation to the whole w-plane except
the following poles; a simple pole at w=l (resp. w=3/2), and double poles
at w=(1/2)--n (n=0, 1,2, ...).

Proof. First we prove or Case I. As t-0, by integrating by parts,

(7) I(t)=(vol (F\G/K)/4) exp(-t(r+(s-po)))rtanh(r)dr= anin,
with a e R. The theorem of Kurokawa [5, Theorem 3(2)] shows that the
terms o the gamma-actors in P(t)-Trc (t) can be expanded as

( 8 ) (b+c log t)t-(n + dntn (b, c, d e R).
=0 =0

The unction l(s) in the scattering determinant is obtained by M.N. Huxley.
He proves that l(s) can be written as a product o Dirichlet L-unctions
modulo N. It is easily seen that the concerning term ia the trace formula
decays exponentially as t0, and it cuses no poles of (w, s, ). We can
easily expand all the other terms and their expansions does not have differ-
ent behavior rom those in (7) and (8). Next we prove or Case II. As
t0, the identity component has the expansion;

I(t)- (vol (FG/K)/4) exp (--t(r+ 1-t-(-2)))rdr- et-(/,
=0

wih e e R. The scattering determinan is given by I. Nfra and P. Sarnak
who rove ha he function l() can be written as a quoien of Dedekind
eta functions of the Hilbert class field H of N. In this ease again the con-
cerning term has no influence to the holomorhy of (w, , A). he treat-
ment of other terms are the same as in Case I. he roof is completed.

he SeIberg eta function is defined as follows.

(Cased Z() "= (1-N(P)-"-),

(Case II) Z() := (1--a(P)-a(P)-N(P)-9,

where P is the set of all (resp. a certain kind of) rimitive hyperbolic eon-
jugaey classes and (, l) runs through all the pairs of ositive integers satis-
fying a certain congruence relation described in []. The norm N(P) is u
go be a(P)l where (P) is the eigen value of P such tha I(e)l> 1.

Theorem Z. Uder the itatio o Ce I (re. II), the Selberg zeta
etio h the determinant ezeion (6) hoe eplieit orm re ive
a
I Ce I;

Zz() ([’()(2) /F())

ZA) (-"(-( ))/’(+ (1 /)-9
det (A, )=(A/) L(2, Z).F()(-(1/2))-(/n,

I Cae II

Z(s)=exp (log N(To)/2 ord M(R)) (1--cos (2m /v))-s
=0
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Zp(s) exp ((h /4)((C/R)/ 3 log 2- 2Ds)(s- 1)/2F(s)-
detc (, s)=os,(s)(s 1)+t--I

where all the notations and constants, whose explicit definition is in [2] (resp.
[3]), are determined by G and F.

Proof. We only have to solve (5) with Y being terms in the trace
ormula. We need only straight orward calculation which is in [2] (resp.
[3]) in detail. The proo is completed.

Remark 4. Recently, I. Erat also defines the determinant of the
Laplacian composed o both discrete and continuous spectrum. He induces
some sequence expressed via poles o (s), and regards it as "the eigenvalues
o the continuous spectrum." Constructing the spectral zet unction in-
cluding both discrete and continuous spectrum, he defines the determinant
by the standard method. By his method, we can treat all the torsion-ree
cofinite discrete subgroup F, but cannot compute the contribution o each
type of spectrum separately, which is not symmetric with each other com-
paring with the trace ormula. The explicit relation of his results and the
results in this paper .is described in [4].
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