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In the subsequent notes, we announce some results on the Mordell-Weil
groups of elliptic curves over a function field or, equivalently, of elliptic
surfaces. The key idea is to view such a Mordell-Weil group as a lattice
with respect to the height pairing.

First, in the part I, we formulate the basic results on the Mordell-Weil
groups from this viewpoint, which leads to some new results (Theorems 1.2
and 1.4).

Then, in the part II, we apply this theory to the case of rational
elliptic surfaces, and we obtain the structure theorem for the Mordell-Weil
lattices of such surfaces in the most interesting case, i.e., in the case of
higher rank : the Mordell-Weil lattices of rank >6 are precisely E,, E¥, E¥
or D} where E,, E,, - - - are the root lattices and * indicates the dual lattices
(Theorem 2.1). As a direct consequence, we can find very effectively the
generators of such a Mordell-Weil group (Theorem 2.2). Next we make
everything more explicit in terms of the Weierstrass form (Theorem 3.2).
Another key idea is the use of the specialization map to an additive fibre
(Lemma 3.3). In §4, we give some examples of the elliptic surfaces of
Delsarte type.

In the part I1I, we discuss the Galois representations arising from the
Mordell-Weil lattices. We can essentially answer the problem raised by
Weil and Manin ([15, p. 558], [6, Ch. 4:23. 13]).

1. The Mordell-Weil lattices. Let k be an algebraically closed field
of arbitrary characteristic. Let K=%k(C) be the function field of a smooth
projective curve C over k. Let E be an elliptic curve defined over K, given
with a K-rational point O, and let E(K) denote the group of K-rational
points of E, with the origin O.

We consider the associated elliptic surface f: S—C (the Kodaira-Néron
model of F/K). By this we mean the following: S is a smooth projective
surface defined over k and f is a morphism of S onto C such that 1) the
generic fibre is E and 2) no fibres contain an exceptional curve of the first
kind (i.e. a smooth rational curve with self-intersection number —1). The
existence and the uniqueness, up to an isomorphism, of the Kodaira-Néron
model is well-known ([4], [71, [13]).

Now the global sections of f: S—C are in a natural one-to-one corre-
spondence with the K-rational points of E. Thus we use the same notation
E(K) to denote the group of sections of f. For Pe E(K), (P) will denote
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the prime divisor of S which is the image of the section P: C—S.

We assume throughout that (x) f is not smooth, i.e., there is at least
one singular fibre. Then E(K) is finitely generated by the Mordell-Weil
theorem, and it is called the Mordell-Weil group of the elliptic curve F/K,
or of the elliptic surface f: S—C.

We shall introduce the notion of Mordell-Weil lattices, i.e., the struc-
ture of positive-definite lattice on the Mordell-Weil group modulo torsion,
by embedding the latter to the Néron-Severi group.

Let NS(S) be the Néron-Severi group of S. It is defined as the group of
divisors modulo algebraic equivalence, and known to be finitely generated.
Under the assumption (%), it is torsion-free. The intersection number
(D,D,) defines the structure of an integral lattice on NS(S).

Let T be the sublattice of NS(S) generated by the zero section and all
the irreducible components of fibres. We call T the trivial sublattice of
NS(S). Let L=T"* be the orthogonal complement of T in NS(S), which we
call the essential sublattice of NS(S). Then L is a negative-definite even
integral lattice; this is a consequence of the Hodge index theorem, the
adjunction formula and the canonical bundle formula of an elliptic surface.

On the other hand, let E(K)° be the subgroup of finite index in the
Mordell-Weil group E(K) consisting of those sections which pass through
the same irreducible component of every fibre as the zero section. With
these notation, we can state the two fundamental theorems on the Mordell-
Weil groups, of which the first one is well-known (cf. [9, §1]) while the
second is new :

Theorem 1.1. There is a natural isomorphism :

1.1) EE)~=NS(S)/T.

(The isomorphism is given by the map P—(P) mod T, with the inverse map
D—sum (D|;), the sum of the divisor D|, on E in the sense of the group
law.)

Theorem 1.2. There is a unique homomorphism ¢: E(K)—NS(S),
such that o(P)=(P) mod Ty and Im(p) | T. The map ¢ fits in the commu-
tative diagram:

0——> E(K) oi—> B(K)—2—> L*
1.2) U U
EK)Y =~ L
with exact rows, where L* is the dual lattice of L.
Definition 1.3. For P, P’ ¢ E(K), let
1.3) (P, P'y=—(p(P)-p(P).
This defines the structure of positive-definite lattices on E(K)° and
E(K)/E(K),,, which will be called the narrow Mordell-Weil lattice and the
Mordell-Weil lattice of E/K or of f: S—C. Note that the former is a
positive-definite even integral lattice.
Theorem 1.4. With the notation of Theorem 1.2, assume further
that NS(S) is unimodular. Then the map ¢ induces:
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EK)/(tor) ~ L*
1.9 U U
E(K) =~ L.

Moreover we have [L*: Ll=det L=(det T)/|E(K),,.[.

Proposition. 1.5. Let K’ be a finite extension of K. Then
1.5) (P, Ppun=IK": KKP, P")p,
for any P, P’ e E(K).

The above results can be made more explicit in terms of the singular
fibres of f: S—C. Let F be any fixed fibre and let R be the set of the
reducible fibres of f. For each v € R, write

f_l(v)290,0+2121 #v,t@v,z (Klv,c:l)
where 0, , (0<i<m,—1) are the irreducible components, m, being their
number, such that 6, , is the unique component of f-'(v) meeting the zero
section. The trivial sublattice T of NS(S) is the direct sum of {(0), F»
and T,=(6,,,;({t>1)> (v e R), and we have

(1.6) P(T) =2+ 3 cr (M, —1),

a.7m det T=[]yer m&, mP =det T,=4{{>0]|p,,.=1}.
Let p(S)=7rkNS(S) and r=rkE(K). Then Theorem 1.1 gives
1.8) o) =r+2+2,cr (m,—1).

Next, the map ¢ is explicitly given by the formula:

(PO,,)
1.9) o(P)=P)—(0)—((PO)—(ONF —2_,cr(O, s, - - -, @v,mv-l)A;‘( : )
(PO, ,-1)
where (PO) is the abbreviation of ((P)(O)) and A, is the negative definite
matrix ((0,,.0,,)),, 5, of size (m,—1). Hence the explicit form of the height
pairing is:
1.10) (P, Py =%+ (PO)+(P'O)—(PP)—3,cr contr,(P, P).
Here X is the arithmetic genus of S (>0 under (x)) and the local contribu-
tion contr, (P, P’) is zero if P or P’ passes 0, , and is equal to the (¢, j)-entry
of (—A4;" if (PO, )=(P'0, )=1 with i, j7>1. In particular,
(1.11) (P, Py=x+(PO)+P0O)—(PP)cZz if P or P’ e E(K)°,
1.12) (P, Py=21+2(P0O)— > ,cr contr,(P)
where contr,(P)=(—A4;",, if (PO,,;)=1, i>1, and =0 if {=0. For any
P+0, we have
1,13 (P, P)>2I—72 ,er contr,(P),
and P ¢ E(K),,, if and only if the right hand side is zero.

Remark. The “height” pairing (P, P’ defined above is essentially the
same as the canonical height due to Néron, Tate or Manin (cf. [5], [14]).
Notice, however, that our definition gives more explicit formula (1.10).
Also it coincides, in the complex case k=C, with the pairing defined by
Cox-Zucker [3], which is based on [9, §1] but which involves some transcen-
dental argument. Thus the novelty in our approach is the idea to view the
Mordell-Weil group as a lattice. It turns out to be very fruitful. Detailed
exposition of the above results is in preparation [12].
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