70. Fourier Coefficients of Certain Eisenstein Series

By Yoshiyuki KITAOKA

Department of Mathematics, School of Science, Nagoya University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1989)

We fix natural numbers $q \ge 3$, $k, n \ge 1$ once and for all. For $\gamma, \delta \in M_n(Z)$, we write $(\gamma, \delta) = 1$ if $(\gamma \delta)$ is a lower $n \times 2n$ submatrix of some element of Sp(n; Z), and put $H_n := \{z \in M_n(C) \mid z = z, \text{ Im } z > 0\}$. We fix such a pair γ, δ hereafter. We consider Eisenstein series

 $E(z, s, k; (\gamma, \delta)) := \sum \det (cz+d)^{-k} \operatorname{abs} (\det (cz+d))^{-2s} \quad (z \in H_n, s \in C),$ where (c, d) runs over $G_n(q) \setminus \{(c, d) \mid (c, d) = 1, c \equiv \gamma, d \equiv \delta \mod q\}$ and $G_n(q) = \{a \in GL_n(Z) \mid a \equiv 1_n \mod q\}$. Our aim is to study Dirichlet series which appear in Fourier coefficients of $E(z, s, k; (\gamma, \delta))$. We denote by $E'(z, s, k; (\gamma, \delta))$ a partial sum of $E(z, s, k; (\gamma, \delta))$ with det $c \neq 0$. For a ring R, we denote by $\Lambda_n(R)$ the set of all symmetric matrices of degree n with entries in R and put $\Lambda_n := \Lambda_n(Z)$. By Λ'_n we denote the set of all half-integral matrices of degree n, i.e. matrices a such that $2a \in \Lambda_n$ and diagonals of a are integers. Following [3], we put, for $z \in H_n$

$$\sum_{a \in A_n} \det (z+a)^{-\alpha} \det (\bar{z}+a)^{-\beta} = \sum_{h \in A'_n} e(\operatorname{tr} hx) \xi(y,h;\alpha,\beta),$$

where x = Re z, y = Im z, e(w) means $\exp(2\pi i w)$ and the function ξ is defined by the above and is fully studied in [3]. We have

 $E'(z, s, k; (\gamma, \delta)) = q^{-n(k+2s)} \sum_{h \in A'_n} \xi(q^{-1}y, h; s+k, s) \zeta(h; k, (\gamma, \delta); s) e(\operatorname{tr} hx/q)$ where $x = \operatorname{Re} z, y = \operatorname{Im} z$ and

 $\zeta(h; k, (\gamma, \delta); s) = \sum_{c} \sum_{d} \det(c)^{-k} \operatorname{abs} (\det(c))^{-2s} e(q^{-1} \operatorname{tr} hc^{-1}d).$

where c runs over $G_n(q) \setminus \{c \in M_n(Z) | c \equiv \gamma \mod q, \det c \neq 0\}$ and d runs over $\{d \in M_n(Z) \mod qcA_n | (c, d) = 1, d \equiv \delta \mod q\}$. Decompose q as $q = \prod q_i$ where q_i is a power of a prime p_i and for a Dirichlet character χ defined modulo q, we denote by χ_i a Dirichlet character defined modulo q_i such that $\chi = \prod \chi_i$. Then we have

$$\begin{aligned} \zeta(h\,;\,k,(\gamma,\delta)\,;\,s) \!=\! 2\varphi(q)^{-1} \sum_{\substack{\chi(-1)=(-1)k \\ p_i((p_i^{k+2s}(\prod_{i=j}\chi_j)(p_i))^{-1};\,h,\chi,(\gamma,\delta)),} \\ \times \prod_i b_{p_i}((p_i^{k+2s}(\prod_{i=j}\chi_j)(p_i))^{-1};\,h,\chi,(\gamma,\delta)), \end{aligned}$$

where φ is the Euler's function and we put, for $h \in A'_n$

h

$$_{p}(x,h) = \sum_{r \in A_{n}(\boldsymbol{Q}_{p})/A_{n}(\boldsymbol{Z}_{p})} x^{\operatorname{ord}_{p} \, \nu(r)} e(\operatorname{tr} hr)$$

where $\nu(r)$ is the product of reduced denominators of elementary divisors of r. To define the function b_{p_i} , we put, for a power Q of a prime p, $h \in A'_n$ and a Dirichlet character χ defined modulo Q,

$$B_p(x; h, \chi; (\gamma, \delta), Q) = \sum_{c \in U_n \setminus c(n; p)} x^{\operatorname{ord}_p \operatorname{det} c} \sum_{\substack{d \mod QcA_n \\ c^t d \in A_n}} e(Q^{-1} \operatorname{tr} hc^{-1} d) \sum_g \chi(\det g),$$

where g runs over $GL_n(Z/QZ)$ with $c \equiv g \gamma \mod Q$ and $d \equiv g \delta \mod Q$ (as a

matter of fact, the possibility of g is at most one), and $U_n = SL_n(Z_p)$, $c(n; p) = \{u \in M_n(Z_p) | \det u \text{ is a power of } p\}$. Then $b_{p_i}(x; h, \chi, (\gamma, \delta)) = B_{p_i}(x; h, \chi_i^{-1}; (\gamma, q_i'\delta), q_i)$ where q_i' is an integer such that $(qq_i^{-1})q_i' \equiv 1 \mod q_i$.

On $b_{v}(x, h)$, we know ([1]) the following

Theorem. (i) $b_p(x, 0_n) = (1-x) \prod_{0 < k \le \lfloor n/2 \rfloor} (1-p^{2k}x^2) \{(1-p^n x) \prod_{\substack{n+1 \le j < 2n \\ 2lj}} (1-p^j x^2)\}^{-1}$, where [a] denotes the largest integer which does not exceed a. (ii) Let $h = \begin{pmatrix} h_1 & 0 \\ 0 & 0 \end{pmatrix} \in \Lambda_n(\mathbf{Z}_p)$ for $h_1 \in \Lambda_r(\mathbf{Z}_p)$ with det $h_1 \neq 0$ $(1 \le r \le n)$. If r is odd, then $b_p(x, h) = f(x)(1-x) \prod_{1 \le j \le \lfloor n/2 \rfloor} (1-p^{2j}x^2) \{\prod_{\substack{n+1 \le k \le 2n-r \\ 2lk}} (1-p^k x^2)\}^{-1}$. If r is even, then

$$b_{p}(x,h) = g(x)(1-x) \prod_{1 \le j \le \lfloor n/2 \rfloor} (1-p^{2j}x^{2}) \{ (1-\eta p^{n-r/2}x) \prod_{\substack{n+1 \le k \le 2n-r \\ 2 \nmid k}} (1-p^{k}x^{2}) \}^{-1}.$$

Here f(x), g(x) are polynomials in x and η is 0 or ± 1 .

If p does not divide det $2h_1$, then f(x) = g(x) = 1 and $\eta = \left(\frac{(-1)^{r/2} \det 2h_1}{p}\right)$

(Kronecker symbol).

Theorem. Let p be a prime and Q a power of p and for a Dirichlet character χ defined modulo Q, $h \in \Lambda'_n$ and $(\gamma, \delta) = 1$, following assertions are true.

(i) $B_p(x; h, \chi; (\gamma, \delta), Q)$ is a rational function in x whose (not necessarily reduced) denominator is

$$(1-p^{t}x)\prod_{\substack{t+1 \leq j \leq 2n-r \\ 2 \neq j}} (1-p^{j}x^{2}) \prod_{\substack{2t+1 \leq i \leq 2n-r \\ 2 \mid i}} (1-p^{i}x^{2})$$

where $r = \operatorname{rank} h$, t = n - r.

(ii) If det $h \neq 0$ or $\chi^2 \neq id$, then $B_p(x; h, \chi; (\gamma, \delta), Q)$ is a polynomial in x.

(iii) If $\chi^2 \neq id$ and there is an elementary divisor of γ which is divided by Q, then $B_p(x; 0_n, \chi; (\gamma, \delta), Q) = 0$.

(iv) Let $\gamma \equiv u \begin{pmatrix} 0 & 0 \\ 0 & \gamma_4 \end{pmatrix}^t v$, $\delta \equiv u \begin{pmatrix} \delta_1 & 0 \\ 0 & \delta_4 \end{pmatrix} v^{-1} \mod Q$, where $u, v \in U_n, \gamma_4, \delta_4 \in M_t(Z_p)$, $\delta_1 \in M_r(Z_p)$ (r+t=n) and assume $\det \gamma_4 \neq 0$ and $Q\gamma_4^{-1} \equiv 0 \mod p$. Then we have

e have

$$B_{p}(x; 0_{n}, \chi; (\tilde{\gamma}, \delta), Q) = \bar{\chi}(\det \delta_{1})\bar{\chi}(\det (\tilde{\gamma}_{4}\tilde{\gamma}_{4}^{-1}))(\det \tilde{\gamma}_{4})^{r}$$

 $\times B_{p}(x; 0_{t}, \chi; (\tilde{\gamma}_{4}, \tilde{\delta}_{4}), Q) B_{p}(p^{t}x; 0_{r}, \chi; (0_{r}, 1_{r}), Q),$

where $\tilde{\gamma}_4$ is the elementary divisor matrix of $\tilde{\gamma}_4$ and $\tilde{\delta}_4$ is defined by $\tilde{\gamma}_4 \equiv u_0 \tilde{\gamma}_4 v_0 \mod Q$, $\delta_4 \equiv u_0 \tilde{\delta}_4^{-1} v_0^{-1} \mod Q$ for $u_0 \in GL(t, \mathbb{Z}/q\mathbb{Z})$, $v_0 \in U_t$. If r=0, then we must put $\bar{\chi}(\det \delta_1)B_p(p^tx; 0_r, \chi; (0_r, 1_r), Q)=1$. If t=0, then we put $\bar{\chi}(\det(\tilde{\gamma}_4\tilde{\gamma}_4^{-1}))(\det \tilde{\gamma}_4)^r B_p(x; 0_t, \chi; (\tilde{\gamma}_4, \tilde{\delta}_4), Q)=1$.

(v) If det $\gamma \neq 0$ and $Q\gamma^{-1} \equiv 0_n \mod p$, then we have $B_p(x; 0_n, \chi; (\gamma, \delta), Q) = \overline{\chi}(p^{-\operatorname{ord}_p \operatorname{det} \gamma} \operatorname{det} \gamma) x^{\operatorname{ord}_p \operatorname{det} \gamma} \sum_{A \in \mathcal{A}_n/\gamma \mathcal{A}_n t_{\gamma}} \chi(\operatorname{det}(1 + A \alpha Q \gamma^{-1}))$

where α is any element such that $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in Sp(n, \mathbb{Z}/Q\mathbb{Z})$ for some β .

(vi) Suppose $\chi^2 = id$, $\chi \neq id$; then $B_p(x; 0_n, \chi; (0_n, 1_n), Q) = 0$ either for $p \neq 2$ and odd n or for p = 2.

Eisenstein Series

(vii) $B_p(x; 0_n, \chi; (0_n, 1_n), Q) = Q_2^{n(n+1)} x^n \operatorname{ord}_p Q_2 B_p(x; 0_n, \chi; (0_n, 1_n), Q_1)$ where $Q_1 = \operatorname{lcm}(p, \text{ conductor of } \chi)$ and $Q_2 = Q/Q_1$, and we have $B_p(x; 0_n, id; (0_n, 1_n), p) = p^{n(n+1)} \prod_{\substack{1 \le j \le n \\ 2 \nmid j}} (1-p^{-j}) x^n$ $\times \{(1-p^n x) \prod_{\substack{n+1 \le j \le 2n \\ n+1 \le j \le 2n}} (1-p^j x^2)\}^{-1} \{ \begin{array}{c} 1 & 2 \nmid n, \\ 1-x & 2 \mid n. \end{array} \}$

If $\chi^2 = id$, $\chi \neq id$, $2 \mid n$ and $p \neq 2$, then $B_p(x; 0_n, \chi; (0_n, 1_n), p) = p^{n(n+1)} (\chi(-1)p)^{n/2} \prod_{\substack{1 \leq j \leq n \\ 2 \neq j}} (1-p^{-j}) x^n \{ \prod_{\substack{n+1 \leq j < 2n \\ 2 \neq j}} (1-p^j x^2) \}^{-1}.$

The denominator of $B_p(x; h, \chi; (\gamma, \delta), Q)$ in (i) seems to be too big, as contrasted with the previous theorem.

To prove the theorem, the following are necessary.

Lemma. Let r+t=n, $r\geq 1$, $t\geq 1$. Then a complete set of representatives of $U_n \setminus \{(c, d) \mid c \ ^td \in \Lambda_n, \ c \in c(n; p), \ d \in M_n(\mathbb{Z}_p)\}$ is

$$c = \begin{pmatrix} w\gamma & 0 \\ -c_4{}^t d_2{}^t w^{-1}\alpha + f\gamma & c_4 \end{pmatrix}, \quad d = \begin{pmatrix} w\delta & d_2 \\ -c_4{}^t d_2{}^t w^{-1t}\beta + f\delta & d_4 \end{pmatrix}$$

where w, γ run over $U_r \setminus c(r; p), c_4$ does over $U_t \setminus c(t; p), \delta$ does over $M_r(Z_p)$ with $(\gamma, \delta) = 1$, f does over $M_{t,r}(Z_p) / M_{t,r}(Z_p)w, d_2$ does over $M_{r,t}(Z_p)$ with $c_4^t d_2^t w^{-1}$ integral and d_4 does over $M_t(Z_p)$ with $c_4^t (d_4 - f w^{-1} d_2) \in \Lambda_t(Z_p)$. Moreover α, β are arbitrarily fixed matrices so that $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in Sp(r; Z_p)$.

Lemma. Let $h \in \Lambda'_n$ with det $h \neq 0$, $0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$, and Q a power of a prime p. If λ_n is sufficiently large (dependently on Q and h), then $\sum \sum e(Q^{-1} \operatorname{tr} h c^{-1} d) = 0$

where c runs over $U_n(Q) \setminus \{\text{the set of } c \in c(n; p) \text{ such that } \{p^{\lambda_1}, \dots, p^{\lambda_n}\} \text{ is elementary divisors of } c\}$, and d runs over $\{d \in M_n(Z_p) \mod Qc\Lambda_n(Z_p) | c^t d \in \Lambda_n(Z_p), (c, d) \equiv (7, \delta) \mod Q\}$. Here we put $U_n(Q) = \{u \in SL_n(Z_p) | u \equiv 1_n \mod Q\}$.

To evaluate $B_p(x; 0_n, \chi; (0_n, 1_n), p)$, we need a well known formula for Gaussian polynomials. Put

$$(q)_n = \begin{cases} 1 & \text{if } n=0, \\ \prod_{i=1}^n (1-q^i) & \text{if } n>0, \end{cases}$$

and

$$\begin{bmatrix} m \\ n \end{bmatrix} = \begin{cases} (q)_m (q)_n^{-1} (q)_{m-n}^{-1} & \text{if } 0 \le n \le m, \\ 0 & \text{otherwise.} \end{cases}$$

Then the following is useful.

Lemma.

$$\prod_{i=0}^{n-1} (X - q^{i}Z) = \sum_{k=0}^{n} {n \brack k} \prod_{j=0}^{k-1} (Y - q^{j}Z) \prod_{k=0}^{n-k-1} (X - q^{k}Y).$$

Details will appear elsewhere.

References

- [1] Y. Kitaoka: Nagoya Math. J., 95, 73-84 (1984).
- [2] ——: Proc. Japan Acad., 63A, 114-117 (1987).
- [3] G. Shimura: Math. Ann., 260, 269-302 (1982).
- [4] ——: Duke math. J., 50, 417-476 (1983).

No. 7]