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70. Fourier Coefficients of Certain Eisenstein Series

By Yoshiyuki KiTAOKA
Department of Mathematics, School of Science, Nagoya University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1989)

We fix natural numbers ¢>3, k, n>>1 once and for all. For 7, de
M (Z), we write (7, 0)=1 if (70) is a lower n X 2n submatrix of some element
of Sp(n; Z), and put H,:={ze M, (C)|’2=z, Im2z>0}. We fix such a pair
7, 0 hereafter. We consider Eisenstein series

E(z,8,k; (r,0):=>,det(cz+d) *abs(det(cz+d))"* (eH,, seC),
where (¢, d) runs over G, (@)\{(c,D]|(c,d)=1, c=7, d=dmod g} and G,(q)=
{a e GL,(Z)|a=1,mod q}. Our aim is to study Dirichlet series which appear
in Fourier coefficients of E(z,s, k; (r,6)). We denote by E'(z,s, k; (7,0)) a
partial sum of E(z,s, k; (7, 9)) with det ¢£0. For a ring R, we denote by
A,(R) the set of all symmetric matrices of degree » with entries in R and
put 4,:=4,Z). By A, we denote the set of all half-integral matrices of
degree n, i.e. matrices a such that 20 ¢ 4, and diagonals of a are integers.
Following [3], we put, for ze¢ H,,

2. det(z+a) *det(Z+a) f= 3 e(tr ha)é(y, h; «, B),
ned,

acdy
where x =Rez, y=Im z, e(w) means exp (2riw) and the function & is defined
by the above and is fully studied in [3]. We have
E'(z,8,k; (1, 0))=q""** > &(q™'y, h; s+ k, 8)C(h; k, (7, 8) ; s)e(tr ha/ q)

hEA},

where x=Rez, y=Imz and

Ehi ke, (r,8); 8)=2, >, det(c)-" abs (det (¢))**e(q~" tr he'd).

c da

where ¢ runs over G, (Q\{ce M, (Z)|c=7modq, detc+0} and d runs over
{de M, (Z) mod qc4,|(¢, d)=1, d=d mod ¢q}. Decompose q as ¢=1[] q, where
g, is a power of a prime p, and for a Dirichlet character X defined modulo

q, we denote by X; a Dirichlet character defined modulo ¢, such that Xx=|] %,.
Then we have

C(hs Ey (r,0) 5 8)=20(q)"" ; n%q 1}2 b (= Uw))~*, )

x(=1)=(-Dk
X [J bm((zo’{*“(jl;[i XY pN'5 kX, (7, 0)),
where ¢ is the Euler’s function and we put, for 2 e 4,
b (x, h)= > x4 *Me(tr hr),
7€ 4n(Qp)/An(Zp)
where () is the product of reduced denominators of elementary divisors of
r. To define the function b,,, we put, for a power Q of a prime p, he 4,
and a Dirichlet character X defined modulo @,
B(x; hy X5 (7,0), Q)= >, acrdedete S e(Q'tr he'd) 3 X(det g),
g

c€ Un\c(n;p) d mod Qcdp
ctd€dn

where g runs over GL,(Z/QZ) with ¢=gr modQ and d=gimodQ (as a
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matter of fact, the possibility of g is at most one), and U,=SL,(Z)), ¢(n; p)
={ue M, (Z,)|detu is a power of p}. Then b,(x; h,X, (,0)=B,(x; h, X*;
7, ¢/9), q,) where ¢/ is an integer such that (¢¢;")¢/=1mod q,.
On b,(z, h), we know ([1]) the following
Theorem. (i) b,(%,0,)=0—2) [Jockcrnn—p*2){A—p"x) ﬂnﬂﬁmn
J
A —p’ah}!, where [a] denotes the largest integer which does not exceed a.
) Let h=(g' ()€ 4.2, for hue A(Z,) with det b, #0 (1<r<m).
If r is odd, then
b(x, h)=f(x)1—2x) ] ] A—p¥2){ I A—pad}i.

1<j<[n/2 n+lgzk*%2n—r
If r is even, then
b(x, =g@x)A—2) T[] A—pY2){A—yp~"x) [] QA—pad}

1<j<[n/2] n+1s2k*%2n—r
Here f(x), g(x) are polynomials in x and 5 is 0 or 1.
/2
If p does not divide det 2h,, then f(x)=g(x)=1 and p:(M)
D

(Kronecker symbol).

Theorem. Let p be a prime and Q a power of p and for a Dirichlet
character X defined modulo Q, h e A, and (7,5)=1, following assertions are
true.

(i) Byx;hXx;1,0),Q) ts a rational function in x whose (not neces-
sarily reduced) denominator is

A—p'» [ A-p2) [ A—-p'a?H

t+1<ji<2n—r 2t+1<t<2n—1r
217 2|1
where r=rank h, t=n—r.
(ii) If det h=+0 or x*s£id, then B,(x; h, X; (1, 0), Q) is @ polynomial in x.
(iii) If 2*s£id and there is an elementary divisor of v which is divided
by Q, then By(x; 0,,%; (¥, 0), Q) =0.

(iv) Let rzu(g 24) ty, 5514((5)‘ g“)v" mod @, where u,ve U,, 7, 0, €

MJ(Z), 6,e M(Z,) (r+t=n) and assume det7,#0 and Qr;'=0mod p. Then
we have
B, (x;0,,%; (1,0, Q) =2(det 6)X(det (7,7;")) (det 7,)"

XB(x;0,%; (74, 8,), @B, (p'%;0,,%; (0,,1,), Q),
where 7, is the elementary divisor matrixz of 7, and §, is defined by 7,=
w7 womod Q, 6, =ud vy mod Q for uye GL(t, Z/qZ), v,e U,. If r=0, then
we must put X(dets)B,(p'x;0,,%;(0,,1,), Q=1. If t=0, then we put
2(det (r, 7)) (det 7B, (x5 0,, %5 (74, 6,), @ =1.

(v) If detr-+0 and Qr—'=0,mod p, then we have
B,(x;0,%; (,0), Q=X(p-cz¢rdet)aerd»®tr 37 X(det(1+AaQr™"))

AeAn/T/‘ntT
where « is any element such that (‘; g) e Sp(n, Z/QZ) for some B.

(vi) Suppose ¥*=1id, 1+id; then B (x;0,,%;(0,,1,),Q)=0 either for
p+2 and odd n or for p=2.
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(vii) By(x;0,,X;(0,,1,), Q=" Vx" > %B (x;0,,%; (0,,1,), Q)
where Q,=lem(p, conductor of X) and Q,=Q/Q,, and we have
B,(x;0,1d;(0,,1,),p)=p""*" [ 1—p )"
1

<j<n
217

x{l—p2) TI (l—psz)}“{l 2fn,
n1Si<in 1—z 2|n.
If ¥*=1id, X+1d, 2|n and p+2, then
B(x;0,,%;0,,1,), p)=p"""A(=L)p)** [[ A—pHa{ [[ A—plah}-.
1325{]371 n+12£*§<2n
The denominator of B, (x; &, X; (7,0), Q) in (i) seems to be too big, as
contrasted with the previous theorem.
To prove the theorem, the following are necessary.
Lemma. Letr+t=n,r>1,t>1. Then a complete set of representa-
tives of U,\{(c,d)|c'de 4,, ce c(n;p),de M (Z,)}is

c=( wy 0>, d=< wo dz)
—cldw e+ f1 e, —cldw "B+ o d,
where w, 1 run over U,\c(r; p), ¢, does over U, \c(t; p), 6 does over M, (Z,)
with (7,0)=1, f does over M, (Z )M, (Z)w, d, does over M, (Z,) with
cldtw " integral and d, does over M/(Z, with c(d,— fw'dy)e A(Z)).

Moreover «, B are arbitrarily fixed matrices so that <(Tx g) e Sp(r; Z,).
Lemma. Let he A, with det h=£0, 0<3, << - <2, and Q a power
of a prime p. If 2, is sufficiently large (dependently on Q and h), then

5157 e(Q tr he~'d) =0

where ¢ runs over U, (Q)\{the set of ¢ € c(n; p) such that {p*, - - -, p*} 1s ele-
mentary divisors of c}, and d runs over {de M,(Z,) mod Qcd,(Z,)]|c'de
A4,(Z ), (¢, )=(1,5) mod Q}. Here we put U,(Q)={ue SL,(Z,|u=1,mod Q}.
To evaluate B,(x; 0,,%; (0,,1,), ), we need a well known formula for
Gaussian polynomials. Put
(Q)n———{l if n=0,
i (1—q") if n>0,
and
[m]_ {(q)m(q);‘(q);i" if 0<n<m,
n] 1o otherwise.
Then the following is useful.
Lemma.
n-1 ) n Tpl k=t . n—k-1
N&x-en=-3"|TE-en" || @-¢D.
i=0 i=o Lkl j=o h=0

Details will appear elsewhere.
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