70. Fourier Coefficients of Certain Eisenstein Series

By Yoshiyuki Kitaoka
Department of Mathematics, School of Science, Nagoya University
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1989)

We fix natural numbers $q \geq 3, k, n \geq 1$ once and for all. For $\gamma, \delta \in$ $M_{n}(Z)$, we write $(\gamma, \delta)=1$ if ($\gamma \delta$) is a lower $n \times 2 n$ submatrix of some element of $S p(n ; \boldsymbol{Z})$, and put $H_{n}:=\left\{\left.z \in M_{n}(C)\right|^{t} z=z, \operatorname{Im} z>0\right\}$. We fix such a pair γ, δ hereafter. We consider Eisenstein series
$E(z, s, k ;(\gamma, \delta)):=\sum \operatorname{det}(c z+d)^{-k} \operatorname{abs}(\operatorname{det}(c z+d))^{-2 s} \quad\left(z \in H_{n}, s \in C\right)$, where (c, d) runs over $G_{n}(q) \backslash\{(c, d) \mid(c, d)=1, c \equiv \gamma, d \equiv \delta \bmod q\}$ and $G_{n}(q)=$ $\left\{a \in G L_{n}(Z) \mid a \equiv 1_{n} \bmod q\right\}$. Our aim is to study Dirichlet series which appear in Fourier coefficients of $E(z, s, k ;(\gamma, \delta))$. We denote by $E^{\prime}(z, s, k ;(\gamma, \delta))$ a partial sum of $E(z, s, k ;(\gamma, \delta))$ with det $c \neq 0$. For a ring R, we denote by $\Lambda_{n}(R)$ the set of all symmetric matrices of degree n with entries in R and put $\Lambda_{n}:=\Lambda_{n}(Z)$. By Λ_{n}^{\prime} we denote the set of all half-integral matrices of degree n, i.e. matrices a such that $2 a \in \Lambda_{n}$ and diagonals of a are integers. Following [3], we put, for $z \in H_{n}$

$$
\sum_{a \in \Lambda_{n}} \operatorname{det}(z+\alpha)^{-\alpha} \operatorname{det}(\bar{z}+a)^{-\beta}=\sum_{h \in \Lambda_{n}^{\prime}} e(\operatorname{tr} h x) \xi(y, h ; \alpha, \beta),
$$

where $x=\operatorname{Re} z, y=\operatorname{Im} z, e(w)$ means $\exp (2 \pi i w)$ and the function ξ is defined by the above and is fully studied in [3]. We have

$$
E^{\prime}(z, s, k ;(\gamma, \delta))=q^{-n(k+2 s)} \sum_{n \in A_{n}^{\prime}} \xi\left(q^{-1} y, h ; s+k, s\right) \zeta(h ; k,(\gamma, \delta) ; s) e(\operatorname{tr} h x / q)
$$

where $x=\operatorname{Re} z, y=\operatorname{Im} z$ and

$$
\zeta(h ; k,(\gamma, \delta) ; s)=\sum_{c} \sum_{a} \operatorname{det}(c)^{-k} \operatorname{abs}(\operatorname{det}(c))^{-2 s} e\left(q^{-1} \operatorname{tr} h c^{-1} d\right) .
$$

where c runs over $G_{n}(q) \backslash\left\{c \in M_{n}(Z) \mid c \equiv \gamma \bmod q\right.$, $\left.\operatorname{det} c \neq 0\right\}$ and d runs over $\left\{d \in M_{n}(Z) \bmod q c \Lambda_{n} \mid(c, d)=1, d \equiv \delta \bmod q\right\}$. Decompose q as $q=\Pi q_{i}$ where q_{i} is a power of a prime p_{i} and for a Dirichlet character χ defined modulo q, we denote by χ_{i} a Dirichlet character defined modulo q_{i} such that $\chi=\prod \chi_{i}$. Then we have

$$
\begin{aligned}
& \zeta(h ; k,(\gamma, \delta) ; s)=2 \varphi(q)^{-1} \sum_{ \zeta (h ; k , (\gamma , \delta) ; s) = 2 \varphi (q) ^ { - 1 } \sum _ {\substack{ \substack {\chi (\underset{\bmod }{ }(\underline{q}) \\
\begin{subarray}{c}{(-1)=(-1) k{ \chi (\underset { \operatorname { m o d } } { } (\underline { q }) \\
\begin{subarray} { c } { (- 1) = (- 1) k } }\end{subarray}} \prod_{p \nmid q} b_{p}\left(\left(p^{k+2 s} \chi(p)\right)^{-1}, h\right)} \\
& \times \prod_{i} b_{p_{i}}\left(\left(p_{i}^{k+2 s}\left(\prod_{j \neq i} \chi_{j}\right)\left(p_{i}\right)\right)^{-1} ; h, \chi,(\gamma, \delta)\right),
\end{aligned}
$$

where φ is the Euler's function and we put, for $h \in \Lambda_{n}^{\prime}$

$$
b_{p}(x, h)=\sum_{r \in \Lambda_{n}\left(\mathbb{Q}_{p}\right) / A_{n}\left(\mathbb{Z}_{p}\right)} x^{\circ \operatorname{ord}_{p}(r)} e(\operatorname{tr} h r),
$$

where $\nu(r)$ is the product of reduced denominators of elementary divisors of r. To define the function $b_{p_{i}}$, we put, for a power Q of a prime $p, h \in \Lambda_{n}^{\prime}$ and a Dirichlet character χ defined modulo Q,

$$
B_{p}(x ; h, \chi ;(\gamma, \delta), Q)=\sum_{c \in U_{n} \backslash(n ; p)} x^{\operatorname{ord} p \operatorname{det} c} \sum_{\substack{d \bmod _{\begin{subarray}{c}{ \\
c^{t} d \in \Lambda_{n}} }} e\left(Q^{-1} \operatorname{tr} h c^{-1} d\right)} \\
{g} \\
{ } \\
{c^{\prime}}\end{subarray}} \chi(\operatorname{det} g),
$$

where g runs over $G L_{n}(\boldsymbol{Z} / Q Z)$ with $c \equiv g \gamma \bmod Q$ and $d \equiv g \delta \bmod Q($ as a
matter of fact, the possibility of g is at most one), and $U_{n}=S L_{n}\left(Z_{p}\right), c(n ; p)$ $=\left\{u \in M_{n}\left(Z_{p}\right) \mid \operatorname{det} u\right.$ is a power of $\left.p\right\}$. Then $b_{p_{i}}(x ; h, \chi,(\gamma, \delta))=B_{p_{i}}\left(x ; h, \chi_{i}^{-1}\right.$; $\left(\gamma, q_{i}^{\prime} \delta\right), q_{i}$) where q_{i}^{\prime} is an integer such that $\left(q q_{i}^{-1}\right) q_{i}^{\prime} \equiv 1 \bmod q_{i}$.

On $b_{p}(x, h)$, we know ([1]) the following
Theorem. (i) $b_{p}\left(x, 0_{n}\right)=(1-x) \prod_{0<k \leq[n / 2]}\left(1-p^{2 k} x^{2}\right)\left\{\left(1-p^{n} x\right) \prod_{\substack{n+1 \leq j<2 n \\ 2 \lambda j}}\right.$ $\left.\left(1-p^{j} x^{2}\right)\right\}^{-1}$, where $[a]$ denotes the largest integer which does not exceed a.
(ii) Let $h=\left(\begin{array}{ll}h_{1} & 0 \\ 0 & 0\end{array}\right) \in \Lambda_{n}\left(\boldsymbol{Z}_{p}\right)$ for $h_{1} \in \Lambda_{r}\left(\boldsymbol{Z}_{p}\right)$ with $\operatorname{det} h_{1} \neq 0(1 \leq r \leq n)$.

If r is odd, then

$$
b_{p}(x, h)=f(x)(1-x) \prod_{1 \leq j \leq[n / 2]}\left(1-p^{2 j} x^{2}\right)\left\{\prod_{\substack{n+1 \leq \leq 2<2 n-r \\ 2 \nmid k}}\left(1-p^{k} x^{2}\right)\right\}^{-1}
$$

If r is even, then

$$
b_{p}(x, h)=g(x)(1-x) \prod_{1 \leq j \leq[n / 2]}\left(1-p^{2 j} x^{2}\right)\left\{\left(1-\eta p^{n-r / 2} x\right) \prod_{\substack{n+1 \leq k \leq 2 n-r \\ 2<k}}\left(1-p^{k} x^{2}\right)\right\}^{-1} .
$$

Here $f(x), g(x)$ are polynomials in x and η is 0 or ± 1.
If p does not divide det $2 h_{1}$, then $f(x)=g(x)=1$ and $\eta=\left(\frac{(-1)^{r / 2} \operatorname{det} 2 h_{1}}{p}\right)$ (Kronecker symbol).

Theorem. Let p be a prime and Q a power of p and for a Dirichlet character χ defined modulo $Q, h \in \Lambda_{n}^{\prime}$ and $(\gamma, \delta)=1$, following assertions are true.
(i) $\quad B_{p}(x ; h, \chi ;(\gamma, \delta), Q)$ is a rational function in x whose (not necessarily reduced) denominator is

$$
\left(1-p^{t} x\right) \prod_{t+1 \leq \prod_{\substack{2 \\ 2 \nless j}}\left(1-p^{j} x^{2}\right)} \prod_{\substack{2 t+1 \leq 1 \leq 2 n-r \\ 2 \mid i}}\left(1-p^{i} x^{2}\right)
$$

where $r=\operatorname{rank} h, t=n-r$.
(ii) If $\operatorname{det} h \neq 0$ or $\chi^{2} \neq i d$, then $B_{p}(x ; h, \chi ;(\gamma, \delta), Q)$ is a polynomial in x.
(iii) If $\chi^{2} \neq$ id and there is an elementary divisor of γ which is divided by Q, then $B_{p}\left(x ; 0_{n}, \chi ;(\gamma, \delta), Q\right)=0$.
(iv) Let $\gamma \equiv u\left(\begin{array}{ll}0 & 0 \\ 0 & \gamma_{4}\end{array}\right)^{t} v, \delta \equiv u\left(\begin{array}{cc}\delta_{1} & 0 \\ 0 & \delta_{4}\end{array}\right) v^{-1} \bmod Q$, where $u, v \in U_{n}, \gamma_{4}, \delta_{4} \in$ $M_{t}\left(Z_{p}\right), \delta_{1} \in M_{r}\left(Z_{p}\right)(r+t=n)$ and assume $\operatorname{det} \gamma_{4} \neq 0$ and $Q \gamma_{4}^{-1} \equiv 0 \bmod p$. Then we have

$$
\begin{aligned}
B_{p}\left(x ; 0_{n}, \chi ;(\gamma, \delta), Q\right)= & \bar{\chi}\left(\operatorname{det} \delta_{1}\right) \bar{\chi}\left(\operatorname{det}\left(\gamma_{4} \tilde{\gamma}_{4}^{-1}\right)\right)\left(\operatorname{det} \tilde{\gamma}_{4}\right)^{r} \\
& \times B_{p}\left(x ; 0_{t}, \chi ;\left(\tilde{\gamma}_{4}, \tilde{\delta}_{4}\right), Q\right) B_{p}\left(p^{t} x ; 0_{r}, \chi ;\left(0_{r}, 1_{r}\right), Q\right),
\end{aligned}
$$

where $\tilde{\gamma}_{4}$ is the elementary divisor matrix of γ_{4} and $\tilde{\delta}_{4}$ is defined by $\gamma_{4} \equiv$ $u_{0} \tilde{\gamma}_{4} v_{0} \bmod Q, \delta_{4} \equiv u_{0} \tilde{\delta}_{4}^{t} v_{0}^{-1} \bmod Q$ for $u_{0} \in G L(t, \boldsymbol{Z} / q Z), v_{0} \in U_{t}$. If $r=0$, then we must put $\bar{\chi}\left(\operatorname{det} \delta_{1}\right) B_{p}\left(p^{t} x ; 0_{r}, \chi ;\left(0_{r}, 1_{r}\right), Q\right)=1$. If $t=0$, then we put $\bar{\chi}\left(\operatorname{det}\left(\gamma_{4} \tilde{\gamma}_{4}^{-1}\right)\right)\left(\operatorname{det} \tilde{\gamma}_{4}\right)^{r} B_{p}\left(x ; 0_{t}, \chi ;\left(\tilde{\gamma}_{4}, \tilde{\delta}_{4}\right), Q\right)=1$.
(v) If $\operatorname{det} \gamma \neq 0$ and $Q \gamma^{-1} \equiv 0_{n} \bmod p$, then we have

$$
B_{p}\left(x ; 0_{n}, \chi ;(\gamma, \delta), Q\right)=\bar{\chi}\left(p^{-\operatorname{ord}_{p} \operatorname{det} r} \operatorname{det} \gamma\right) x^{o \operatorname{ord}_{p} \operatorname{det} r} \sum_{A \in A_{n} / \gamma A_{n} t_{\gamma}} \chi\left(\operatorname{det}\left(1+A \alpha Q \gamma^{-1}\right)\right)
$$

where α is any element such that $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in S p(n, Z / Q Z)$ for some β.
(vi) Suppose $\chi^{2}=i d, \chi \neq i d$; then $B_{p}\left(x ; 0_{n}, \chi ;\left(0_{n}, 1_{n}\right), Q\right)=0$ either for $p \neq 2$ and odd n or for $p=2$.
(vii) $\quad B_{p}\left(x ; 0_{n}, \chi ;\left(0_{n}, 1_{n}\right), Q\right)=Q_{2}^{n(n+1)} x^{n \text { ord } p Q_{2}} B_{p}\left(x ; 0_{n}, \chi ;\left(0_{n}, 1_{n}\right), Q_{1}\right)$
where $Q_{1}=\operatorname{lcm}(p$, conductor of $\chi)$ and $Q_{2}=Q / Q_{1}$, and we have

$$
\begin{aligned}
B_{p}\left(x ; 0_{n}, i d ;\left(0_{n}, 1_{n}\right), p\right) & =p^{n(n+1)} \prod_{\substack{1 \leq j \leq n \\
2 \nmid j}}\left(1-p^{-j}\right) x^{n} \\
& \times\left\{\left(1-p^{n} x\right) \prod_{\substack{n+1 \leq j<2 n \\
2, j}}\left(1-p^{j} x^{2}\right)\right\}^{-1} \begin{cases}1 & 2 \nmid n, \\
1-x & 2 \mid n .\end{cases}
\end{aligned}
$$

If $\chi^{2}=i d, \chi \neq i d, 2 \mid n$ and $p \neq 2$, then
$B_{p}\left(x ; 0_{n}, \chi ;\left(0_{n}, 1_{n}\right), p\right)=p^{n(n+1)}(\chi(-1) p)^{n / 2} \prod_{\substack{1 \leq j \leq n \\ 2 \nmid j}}\left(1-p^{-j}\right) x^{n}\left\{\prod_{\substack{n+1 \leq j<2 n \\ 2 \nmid j}}\left(1-p^{j} x^{2}\right)\right\}^{-1}$.
The denominator of $B_{p}(x ; h, \chi ;(\gamma, \delta), Q)$ in (i) seems to be too big, as contrasted with the previous theorem.

To prove the theorem, the following are necessary.
Lemma. Let $r+t=n, r \geq 1, t \geq 1$. Then a complete set of representatives of $U_{n} \backslash\left\{(c, d) \mid c^{t} d \in \Lambda_{n}, c \in c(n ; p), d \in M_{n}\left(Z_{p}\right)\right\}$ is

$$
c=\left(\begin{array}{cc}
w \gamma & 0 \\
-c_{4}{ }^{t} d_{2}^{t}{ }^{t} w^{-1} \alpha+f \gamma & c_{4}
\end{array}\right), \quad d=\left(\begin{array}{cc}
w \delta & d_{2} \\
-c_{4}{ }^{t} d_{2}^{t} w^{-1 t} \beta+f \delta & d_{4}
\end{array}\right)
$$

where w, r run over $U_{r} \backslash c(r ; p), c_{4}$ does over $U_{t} \backslash c(t ; p), \delta$ does over $M_{r}\left(\boldsymbol{Z}_{p}\right)$ with $(\gamma, \delta)=1, f$ does over $M_{t, r}\left(\boldsymbol{Z}_{p}\right) / M_{t, r}\left(\boldsymbol{Z}_{p}\right) w, d_{2}$ does over $M_{r, t}\left(\boldsymbol{Z}_{p}\right)$ with $c_{4}^{t} d_{2}{ }^{t} w^{-1}$ integral and d_{4} does over $M_{t}\left(\boldsymbol{Z}_{p}\right)$ with $c_{4}{ }^{t}\left(d_{4}-f w^{-1} d_{2}\right) \in \Lambda_{t}\left(Z_{p}\right)$. Moreover α, β are arbitrarily fixed matrices so that $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in S p\left(r ; Z_{p}\right)$.

Lemma. Let $h \in \Lambda_{n}^{\prime}$ with det $h \neq 0,0 \leq \lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$, and Q a power of a prime p. If λ_{n} is sufficiently large (dependently on Q and h), then

$$
\sum_{c} \sum_{d} e\left(Q^{-1} \operatorname{tr} h c^{-1} d\right)=0
$$

where c runs over $U_{n}(Q) \backslash\left\{\right.$ the set of $c \in c(n ; p)$ such that $\left\{p^{\lambda_{1}}, \cdots, p^{2_{n}}\right\}$ is elementary divisors of $c\}$, and d runs over $\left\{d \in M_{n}\left(\boldsymbol{Z}_{p}\right) \bmod Q c \Lambda_{n}\left(\boldsymbol{Z}_{p}\right) \mid c^{t} d \in\right.$ $\left.\Lambda_{n}\left(\boldsymbol{Z}_{p}\right),(c, d) \equiv(\gamma, \delta) \bmod Q\right\}$. Here we put $U_{n}(Q)=\left\{u \in S L_{n}\left(\boldsymbol{Z}_{p}\right) \mid u \equiv 1_{n} \bmod Q\right\}$.

To evaluate $B_{p}\left(x ; 0_{n}, \chi ;\left(0_{n}, 1_{n}\right), p\right)$, we need a well known formula for Gaussian polynomials. Put

$$
(q)_{n}= \begin{cases}1 & \text { if } n=0, \\ \prod_{i=1}^{n}\left(1-q^{i}\right) & \text { if } n>0,\end{cases}
$$

and

$$
\left[\begin{array}{l}
m \\
n
\end{array}\right]= \begin{cases}(q)_{m}(q)_{n}^{-1}(q)_{m-n}^{-1} & \text { if } 0 \leq n \leq m, \\
0 & \text { otherwise } .\end{cases}
$$

Then the following is useful.
Lemma.

$$
\prod_{i=0}^{n-1}\left(X-q^{i} Z\right)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] \prod_{j=0}^{k-1}\left(Y-q^{j} Z\right) \prod_{n=0}^{n-k-1}\left(X-q^{h} Y\right)
$$

Details will appear elsewhere.

References

[1] Y. Kitaoka: Nagoya Math. J., 95, 73-84 (1984).
[2] --: Proc. Japan Acad., 63A, 114-117 (1987).
[3] G. Shimura: Math. Ann., 260, 269-302 (1982).
[4] --: Duke math. J., 50, 417-476 (1983).

