68. A Remark on B(P, a)-refinability

By R. H. PRICE^{*)} and J. C. SMITH^{**)}

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1989)

Introduction. Recently a number of general topological properties have been introduced in order to obtain covering characterizations of generalized normal and paracompact spaces. In particular see [1, 2, 7, 10] for such characterizations of subparacompact, θ -refinable, collectionwise normal and collectionwise subnormal spaces. In this paper we consider the general property of $B(P, \alpha)$ -refinable and show how this notion is used to generalize known results for normal and collectionwise normal spaces.

The union of any family \mathcal{U} will be denoted by \mathcal{U}^* . The properties P considered in this paper will be discrete (D), locally finite (LF) and closed (C). Countable ordinals will be denoted by λ and α will be any ordinal.

Definition 1. A space X is $B(P, \alpha)$ -refinable provided every open cover U of X has a refinement $\mathcal{E} = \bigcup \{\mathcal{E}_{\beta} : \beta < \alpha\}$ which satisfies i) $\{\bigcup \mathcal{E}_{\beta} : \beta < \alpha\}$ partitions X, ii) for every $\beta < \alpha$, \mathcal{E}_{β} is a relatively P collection of closed subsets of the subspace $X - \bigcup \{\bigcup \mathcal{E}_{\mu} : \mu < \beta\}$, and iii) for every $\beta < \alpha$, $\bigcup \{\bigcup \mathcal{E}_{\mu} : \mu < \beta\}$ is a closed set. For the case P = C, we require \mathcal{E}_{β} to be a one-to-one partial refinement of U for each $\beta < \alpha$.

The collection \mathcal{E} is often called a $B(P, \alpha)$ -refinement of \mathcal{U} .

In [6,7] the author has used the property of weakly $\bar{\theta}$ -refinable to obtain several open cover characterizations for normal and collectionwise normal spaces. The following are modifications of this idea.

Definition 2. An open cover $\mathcal{G} = \bigcup \{\mathcal{G}_n : n \in N\}$ of a space X is a (k^-) bded-weak $\overline{\theta}$ -cover if (i) the collection $\{\mathcal{G}_n^* : n \in N\}$ is point finite and (ii) for each n, there exist an integer k(n) ($\leq k$) such that $X = \{x : 0 < ord(x, \mathcal{G}_n) \le k(n), n \in N\}$. Spaces for which each open cover has a refinement with the above property are called (k^-) -bded-weak $\overline{\theta}$ -refinable.

Remark. A k-bded weak $\bar{\theta}$ -cover is equivalent to a boundly weak $\bar{\theta}$ -cover, as defined in [10].

Main results.

Theorem 1. A space X is bded-weak $\bar{\theta}$ -refinable iff X is 1-bded weak $\bar{\theta}$ -refinable.

Proof. The sufficiency is clear. Let $\mathcal{G} = \{\mathcal{G}_n : n \in N\}$ be a bded-weak $\bar{\theta}$ -cover of X with k(n) defined as above.

For each $x \in X$ and every $n, j \in N$, define $W(n, x) = \cap \{G \in \mathcal{G}_n : x \in G\}$, and $\mathcal{W}(n, j) = \{W(n, x) : ord(x, \mathcal{G}_n) = j\}$ so that if $ord(x, \mathcal{G}_n) = j$, then $ord(x, \mathcal{W}(n, j)) = 1$. Define $\mathcal{W} = \cup \{\mathcal{W}(n, j) : 0 < j \le k(n), n \in N\}$. It should

^{*)} Department of Mathematics, Judson College, Marion, Alabama 36756, USA.

^{**)} Department of Mathematics, Virginia Tech, Blacksburg, Virginia 24061 USA.

be clear that \mathcal{W} is an open refinement of \mathcal{G} , and $X = \{x: ord(x, \mathcal{W}(n, j)) = 1, 0 < j \le k(n), n \in N\}$. Furthermore, for each $x \in X$, there exists an integer M such that $x \notin \{ \cup \mathcal{G}_n : n > M\}$ so that $x \notin \{ \cup \mathcal{W}(n, j) : n > M\}$. Therefore, $\{ \cup \mathcal{W}(n, j) : 0 < j \le k(n), n \in N\}$ is point finite and the proof is complete.

Theorem 2. A space X is $B(D, \omega)$ -refinable iff X is bded-weak $\overline{\theta}$ refinable.

Proof. (i) Let \mathcal{U} be an open cover of X with $B(D, \omega)$ -refinement $\mathcal{E} = \bigcup \{\mathcal{E}_n = \{E(\alpha, n) : \alpha \in A\} : n \in N\}$. For each $\alpha \in A$ and $n \in N$, choose $U(\alpha, n) \in \mathcal{U}$ such that $E(\alpha, n) \subset U(\alpha, n)$, and define

 $G(\alpha, n) = U(\alpha, n) - \cup \{E(\beta, n) : \beta \neq \alpha\} - \cup \{\cup \mathcal{E}_k : k < n\},\$ $\mathcal{G}_n = \{G(\alpha, n) : \alpha \in A\}, \text{ and }$ $\mathcal{G} = \cup \{\mathcal{G}_n : n \in N\}.$

It is easy to see that \mathcal{G} is a 1-bded-weak $\bar{\theta}$ -refinement of \mathcal{U} .

(ii) Let $\mathcal{G} = \bigcup \{ \mathcal{G}_n : n \in N \}$ be a 1-bded-weak $\overline{\theta}$ -cover of X. We construct a $B(D, \omega)$ -refinement of \mathcal{G} . Now

(1) Let $\mathcal{G}^* = \{ \cup \mathcal{G}_n : n \in N \}$, a point finite collection.

(2) For each $n \in N$, define $C_n = \{x : ord(x, \mathcal{G}^*) = n\}$.

(3) For each $n \in N$, define $F_n = \{f : \{1, 2, \dots, n\} \rightarrow N, f(1) < f(2) < \dots < f(n)\}$.

(4) For each $n \in N$ and $x \in C_n$, let f_x represent the unique member of F_n such that $x \in W(x)$, where $W(x) = \bigcap \{ \bigcup \mathcal{G}_{f_x(r)} : 1 \leq i \leq n \}$.

I. By induction, for each $n \in N$ we construct a family $\mathcal{H}_n = \bigcup \{\mathcal{H}(n, m) : 1 \le m \le n\}$ of collections of sets such that

(a₁) $\mathcal{H}(n, m)$ is a partial refinement of \mathcal{G} for $1 \le m \le n$,

(a₂) $C_n = \bigcup \{ \bigcup \mathcal{H}(n, m) : 1 \le m \le n \}$ for each $n \in N$,

(a₃) for $1 \le m \le n$, $(\cup \mathcal{H}(n, m)) \cap E(n, m) = \emptyset$, where $E(n, m) = \cup \{C_k : k < n\} \cup (\cup \mathcal{H}(n, r) : 1 \le r < m\})$, and

(a₄) $\mathcal{H}(n, m)$ is a relatively discrete collection of closed subsets of the subspace X - E(n, m) for $1 \le m \le n$.

For n=1, define $\mathcal{H}(1,1) = \{C_1 \cap G : G \in \mathcal{G}\}$. Now $E(1,1) = \emptyset$. It should be clear that $\mathcal{H}(1,1)$ satisfies conditions $(a_1)-(a_3)$ above. We assert that $\mathcal{H}(1,1)$ is a discrete collecton of closed subsets of X and hence satisfies (a_4) . Indeed, let $x \in X$. If $x \in C_k$ for some k > 1, then there exist two members of \mathcal{G}^* which contain x and whose intersection is a neighborhood of x that misses C_1 and hence misses $\bigcup \mathcal{H}(1,1)$. If $x \in C_1$, then $x \in C_1 \cap G$ for some $G \in \mathcal{G}$. It is easy to check that G is a neighborhood of x that misses every member of $\mathcal{H}(1,1)$ except $C_1 \cap G$.

Now let *n* be fixed and assume that \mathcal{H}_k has been constructed such that \mathcal{H}_k satisfies $(\mathbf{a}_1)-(\mathbf{a}_4)$ above for each $k, 1 \le k < n$. We construct \mathcal{H}_n . For each $k \in N$ and $1 \le m \le n$, define $C(n, m, k) = \{x \in C_n : m = min(\{r : ord(x, \mathcal{G}_{f_x(r)}) = 1\})$, and $f_x(m) = k\}$,

 $\mathcal{H}(n, m, k) = \{C(n, m, k) \cap G \colon G \in \mathcal{G}_k\}, \ \mathcal{H}(n, m) = \bigcup \{\mathcal{H}(n, m, k) \colon k \in N\},$ and $\mathcal{H} = \bigcup \{\mathcal{H}(n, m) \colon 1 \le m \le n\}.$

The following properties are easy to verify.

(i) $C(n, m, k) = \bigcup \mathcal{H}(n, m, k)$ for each $k \in N$ and $1 \le m \le n$.

(ii) If $(n, m, k) \neq (r, s, t)$, then $C(n, m, k) \cap C(r, s, t) = \emptyset$. In particular, $[\bigcup \mathcal{H}(n, m, k)] \cap [\bigcup \mathcal{H}(r, s, t)] = \emptyset$.

(iii) If $j \neq k$ and $x \in C(n, m, k)$, then W(x) is a neighborhood of x such that $W(x) \cap C(n, m, j) = \emptyset$. In particular, $W(x) \cap (\bigcup \mathcal{H}(n, m, j)) = \emptyset$ Indeed if $y \in C(n, m, j)$, then $f_y(m) = j \neq k = f_x(m)$; hence, $\{\mathcal{G}_{f_y(i)} : 1 \leq i \leq n\} \neq \{\mathcal{G}_{f_x(i)} : 1 \leq i \leq n\}$. Since $ord(y, \mathcal{G}^*)j = n$, it thus follows that $y \notin W(x)$.

The fact that \mathcal{H}_n (a₁)-(a₄) above is straightforward and left for the reader.

II. Define a well-order "<" on the set $S = \{(n, m) : 1 \le m \le n, n \in N\}$ such that for every $(n, m), (k, r) \in S$,

$$(n, m) < (k, r)$$
 iff $\begin{cases} n < k \text{ or} \\ n = k \text{ and } m < n \end{cases}$.

Let $g: S \rightarrow N$ be the unique bijection which preserves this order.

For each $n \in N$, define $\mathcal{P}_n = \mathcal{H}(k, r)$ such that g(k, r) = n, and $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in N\}$.

From the fact that $X = \bigcup \{C_n : n \in N\}$ and that $\mathcal{H}(n,m)$ satisfies conditions $(a_1)-(a_4)$ above for every $n \in N$ and $1 \le m \le n$, it is easy to see that \mathcal{F} is a $B(D, \omega)$ -refinement of \mathcal{G} .

Remark. (1) It has been shown [8] that every θ -refinable space is $B(D, \omega)$ -refinable.

(2) It is stated in [10] that Long Bing [4] has independently obtained the sufficiency of Theorem 2 above.

In [6], the author showed that normality is equivalent to every weak $\bar{\theta}$ -cover having a closed shrink. We now have a generalization of this result.

Theorem 3. A space X is normal iff every open cover of X which has a $B(C, \lambda)$ -refinement also has a closed shrink.

Proof. The sufficiency is clear so let X be normal and $\mathcal{U} = \{U_{\alpha} : \alpha \in A\}$ an open cover of X which has a $B(C, \lambda)$ -refinement $\mathcal{E} = \bigcup \{\mathcal{E}_r = \{E(\gamma, \alpha) : \alpha \in A\}: \gamma < \lambda\}$. By transfinite induction we construct for every $\gamma < \lambda$, a collection $\mathcal{H}_r = \{H(\gamma, \alpha) : \alpha \in A\}$ of cozero subsets of X satisfying

(i) $H_r^* = \bigcup \mathcal{H}_r$ is a cozero set, and

(ii) $F(\gamma, \alpha) = (E(\gamma, \alpha) - \bigcup \{H_{\beta}^* : \beta < \gamma\}) \subset H(\gamma, \alpha) \subset cl(H(\gamma, \alpha)) \subset U_{\alpha}$ for every $\alpha \in A$.

For fixed $\gamma < \lambda$ assume that the collections \mathcal{H}_{β} with the above properties have been constructed for all $\beta < \gamma$. Now $\bigcup \{H_{\beta}^* : \beta < \gamma\}$ is an open set which by condition (ii) above contains $\bigcup \{\bigcup \mathcal{C}_{\beta} : \beta < \gamma\}$; hence, $\{F(\gamma, \alpha) : \alpha \in A\}$ is a collection of closed subsets of X such that $F^* = \bigcup \{F(\gamma, \alpha) : \alpha \in A\}$ is a closed set. Also, $F(\gamma, \alpha) \subset U_{\alpha}$ for each $\alpha \in A$. Since X is normal there exists a cozero set $H(\gamma, \alpha)$ such that $F(\gamma, \alpha) \subset H(\gamma, \alpha) \subset cl(H(\gamma, \alpha) \subset U_{\alpha})$ where H^* is a cozero set, and the construction is complete. Now by Theorem 4.3 of [8] it follows that \mathcal{Q} has a closed shrink.

Corollary. Let X be a normal space.

(i) If X is $B(C, \lambda)$ -refinable, then every open cover of X has a closed shrink.

(ii) If X is countably $B(C, \lambda)$ -refinable, then every countable open cover of X has a closed shrink.

(iii) X is countably paracompact iff X is countably $B(C, \lambda)$ -refinable.

References

- Chaber, J.: On subparacompactness and related properties. Gen. Topology and Appl., 101, 13-17 (1979).
- [2] Junnila, H. J. K.: Three covering properties. Surveys in General Topology. Academic Press, pp. 195-245 (1980).
- [3] Liu Ying-ming: A class of topological spaces which containing the classes of weakly paracompact space and subparacompact spaces. Acta Mathematica Sinica, 3, 212-214 (1977) (in Chinese).
- [4] Long Bing: Some separating or covering properties (to appear).
- [5] R. H. Price: The property $B(P, \alpha)$ -refinability and its relation to generalized paracompact topological spaces. Ph.D.-dissertation, May 1987, Va. Tech.
- [6] Smith, J. C.: Properties of weak $\bar{\theta}$ -refinable spaces. Proc. Amer. Math. Soc., 53, 511-512 (1975).
- [7] ----: On collectionwise normality. Colloq Math., 40, 69-76 (1978).
- [8] ——: Irreducible spaces and property b_1 . Topology Proc., 5, 187–200 (1980).
- [9] Zhu, Jun: Some properties of quasi-paracompact and strong quasi-paracompact spaces. Journal of Mathematical Research Exposition, 1, 9-31 (1984) (in Chinese).
- [10] ——: On collectionwise subnormal spaces. Chinese Ann. of Math., 913(2) (1988).