63. On the Unitarizability of Principal Series Representations of \mathfrak{p}-adic Chevalley Groups

By Hiroyuki Yoshida
Department of Mathematics, Kyoto University
(Communicated by Kunihiko Kodaira, m. J. A., Sept. 12, 1989)

1. In this note, we shall determine the unitarizability of unramified principal series representations of \mathfrak{p}-adic Chevalley groups of classical types. Detailed proofs of all the results stated here are given in [7].
2. Let k be a non-archimedean local field, \mathfrak{D} be the maximal compact subring and $\widetilde{\pi}$ be a prime element of k. Set $q=|\mathfrak{D} / \widetilde{\infty} \mathfrak{D}|$. The following theorem is our main tool in this research.

Theorem 1. Let N be the group of k-rational points of a unipotent algebraic group defined over k. Let T be a distribution of positive type on N. Then, for any $\alpha \in C_{c}^{\infty}(N)$, the convolution $T * \alpha$ is a bounded function on N.
3. Let \boldsymbol{G} be a universal Chevalley group defined over k in the sense of Steinberg [6]. Let \boldsymbol{T} be a maximal k-split torus and \boldsymbol{B} be a Borel subgroup defined over k which contains \boldsymbol{T}. Let N be the unipotent radical of \boldsymbol{B}. Let G, T, B and N stand for the groups of k-rational points of $\boldsymbol{G}, \boldsymbol{T}, \boldsymbol{B}$ and N respectively. Let Σ be the root system and $\Delta=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\ell}\right\}$ be the set of simple roots determined by $(\boldsymbol{G}, \boldsymbol{B}, \boldsymbol{T})$, where ℓ is the rank of \boldsymbol{G}. Let Σ^{+}be the set of positive roots and W be the Weyl group. For $w \in W$, set $\Psi_{w}^{+}=$ $\left\{\alpha \in \Sigma^{+} \mid w \alpha<0\right\}$. We have $B=T N=N T$ and T (resp. N) is generated by $h_{\alpha}(t)$ (resp. $x_{\alpha}(t)$) for $\alpha \in \Sigma^{+}, t \in k^{\times}$(resp. $t \in k$) in the notation of [6]. If $\alpha \in \Sigma$, let $\check{\alpha} \in \operatorname{Hom}\left(\boldsymbol{G}_{m}, \boldsymbol{T}\right)$ be the co-root of α and set $\alpha_{\alpha}=\check{\alpha}(\varpi)=h_{\alpha}(\varpi) \in T$. For $\alpha, \beta \in \Sigma$, we set $\langle\alpha, \beta\rangle=\langle\alpha, \check{\beta}\rangle_{1}$ with the canonical pairing \langle,\rangle_{1} of a root with a co-root. Let δ_{B} denote the modular function of B. For a quasicharacter χ of T, let $P S(\chi)$ denote the space of all locally constant functions φ on G which satisfy

$$
\varphi(t n g)=\delta_{B}(t)^{1 / 2} \chi(t) \varphi(g) \quad \text { for any } t \in T, n \in N, g \in G .
$$

Let $\pi(\chi)$ denote the admissible representation of G realized on $P S(\chi)$ by right translations.

Let K be the subgroup of G generated by $x_{\alpha}(t), \alpha \in \Sigma, t \in \mathfrak{D}$. Then K is a maximal compact subgroup of G and we have the Iwasawa decomposition $G=B K$. We call χ unramified if χ is trivial on $T \cap K$, the group generated by $h_{\alpha}(t), \alpha \in \Sigma^{+}, t \in \mathfrak{D}^{\times}$. Let X be the group of all unramified quasi-characters of T. The map $\chi \rightarrow\left(\chi\left(a_{\alpha_{1}}\right), \chi\left(a_{\alpha_{2}}\right), \cdots, \chi\left(a_{\alpha_{\ell}}\right)\right)$ defines an isomorphism $X \cong\left(C^{\times}\right)^{\ell}$ and we consider X as a complex Lie group. We call χ regular if $w \chi \neq \chi$ for any $w \in W, w \neq 1$. Let X^{r} (resp. X^{i}) denote the set of all $\chi \in X$ which are regular (resp. regular and $\pi(\chi)$ is irreducible). Let
$w \in W$. We set $X_{w}=\left\{\chi \in X \mid w \chi=\bar{\chi}^{-1}\right\}, X_{w}^{r}=X_{w} \cap X^{r}, X_{w}^{i}=X_{w} \cap X^{i}$. Taking $x_{w} \in K$ which represents w, we define an intertwining operator T_{w} from $P S(\chi)$ to $P S(w \chi)$ by

$$
\left(T_{w}(\varphi)\right)(g)=\int_{w N w-1 \cap N \backslash N} \varphi\left(x_{w}^{-1} n g\right) d n, \quad \varphi \in P S(\chi), \quad g \in G
$$

with the invariant measure $d n$ suitably normalized. This integral is absolutely convergent if $\left|\chi\left(a_{\alpha}\right)\right|<1$ for any $\alpha \in \Psi_{w}^{+}$and can be meromorphically continued to the whole $X ; T_{w}$ is holomorphic at χ if $\chi\left(a_{\alpha}\right) \neq 1$ for any $\alpha \in \Psi_{w}^{+}$. In particular, T_{w} is holomorphic on X^{r}.
4. We assume $\chi \in X^{i}$ until the end of 5. If $\pi(\chi)$ is hermitian, there exists a unique $w \in W$ such that $\chi \in X_{w}^{i}, w^{2}=1$. Then $\pi(\chi)$ is unitarizable if and only if the Hermitian form

$$
\begin{equation*}
\left(\varphi_{1}, \varphi_{2}\right)=c \int_{B \backslash G}\left(T_{w}\left(\varphi_{1}\right)\right)(g) \overline{\varphi_{2}(g)} d g, \quad \varphi_{1}, \varphi_{2} \in P S(\chi) \tag{1}
\end{equation*}
$$

is positive definite with $c= \pm 1$. Let w_{0} be the longest element of W and ω_{0} be an element of K which represents w_{0}. Since $B w_{0} N$ is the big cell, we see easily that for every $\Phi \in C_{c}^{\infty}(N)$, the exists a unique $\varphi \in P S(\chi)$ such that $\Phi(n)$ $=\varphi\left(\omega_{0} n\right), n \in N$. We put $\varphi=\iota_{x}(\Phi)$. Then
(2)

$$
T_{x}(\Phi)=T_{w}\left(\iota_{x}(\Phi)\right)\left(\omega_{0}\right), \quad \Phi \in C_{c}^{\infty}(N)
$$

defines a distribution on N. By (1), we have

$$
\left(\varphi_{1}, \varphi_{2}\right)=c \int_{N}\left(T_{w}\left(\varphi_{1}\right)\right)\left(\omega_{0} n\right) \overline{\varphi_{2}\left(\omega_{0} n\right)} d n, \quad \varphi_{1}, \varphi_{2} \in P S(\chi)
$$

and this formula shows that $c T_{x}$ is of positive type if $\pi(\chi)$ is unitarizable.
For a subset J of Δ, let W_{J} denote the group generated by the reflexions obtained from J and let w_{J} be the longest element of W_{J}. It is known (cf. [2], p. 225) that any element of order 2 of W is conjugate to w_{J} for some $J \subseteq \Delta$. Since $\pi\left(w_{1} \chi\right) \cong \pi(\chi)$ for any $w_{1} \in W$, we may assume $\chi \in X_{w_{J}}^{i}$ for some $J \subseteq \Delta$ without losing any generality. Let Σ_{J} be the root system generated by J and set

$$
\Sigma_{J}^{+}=\Sigma_{J} \cap \Sigma^{+}, \quad n_{J}(\alpha)=\sum_{\beta \in \Sigma_{J}^{+}}\langle\beta, \alpha\rangle \quad \text { for } \alpha \in \Sigma_{J}
$$

By Theorem 1, we see that $T_{\chi} * f$ is bounded on N for any $f \in C_{c}^{\infty}(N)$ if $\pi(\chi)$ is unitarizable. We choose f as the characteristic function of U_{1}^{+}, the subgroup of $N \cap K$ generated by $x_{\alpha}(t), \alpha \in \Sigma^{+}, t \in \widetilde{a} \mathfrak{D}$. Then we obtain

Theorem 2. Let $\chi \in X_{w_{J}}^{i}$ and assume that $\pi(\chi)$ is unitarizable. Then we have

$$
q^{-n_{J}(\alpha) / 2}<\left|\chi\left(a_{\alpha}\right)\right|<q^{n_{J}(\alpha) / 2} \quad \text { for any } \alpha \in \Sigma_{J}^{+} .
$$

Corollary 3. If w_{J} acts as the multiplication by -1 on J, then we have (3)

$$
q^{-1}<\left|\chi\left(a_{\alpha}\right)\right|<q \quad \text { for any } \alpha \in \Sigma_{J} .
$$

If $\chi \in X^{r}$, then $\pi(\chi)$ has the unique irreducible quotient (cf. [1], p. 304), which we denote by π_{x}. In the similar way as above, we obtain

Proposition 4. If $\chi \in X_{w_{J}}^{r}$ and π_{x} is unitarizable, then we have

$$
q^{-n_{J}(\alpha) / 2} \leq\left|\chi\left(a_{\alpha}\right)\right| \quad \text { for any } \alpha \in \Sigma_{J}^{+} .
$$

5. We combine Corollary 3 with certain deformation arguments on representations.

Proposition 5. Let $w, w_{1}, w_{2} \in W$ be elements of order 2 such that $w=w_{1} w_{2}, l(w)=l\left(w_{1}\right)+l\left(w_{2}\right)$, where l denotes the length. Let $p:[0,1] \rightarrow X_{w}$ and $p_{1}:[0,1] \rightarrow X_{w_{1}}$ be continuous maps. Put $\chi_{t}=p(t), \chi_{t}^{1}=p_{1}(t)$ for $0 \leq t \leq 1$. We assume the following conditions.
(i) $\chi_{0}=\chi_{0}^{1}$.
(ii) $p(0,1] \subseteq X_{w}^{i}$ and $p_{1}(0,1] \subseteq X_{w_{1}}^{i}$.
(iii) For any $\alpha \in \Psi_{w_{1}}^{+}, \chi_{0}\left(a_{\alpha}\right) \neq 1, q$.
(iv) For any $\alpha \in \Psi_{w_{2}}^{+}, \chi_{0}\left(a_{\alpha}\right)=1$.

Then $\pi\left(\chi_{t_{0}}^{1}\right)$ (resp. $\pi\left(\chi_{t_{0}}\right)$) is unitarizable for some $t_{0} \in(0,1]$ if and only if $\pi\left(\chi_{t}\right)$ (resp. $\pi\left(\chi_{t}^{1}\right)$) is unitarizable for $0<t \leq 1$.

We consider the cases of types B, C and D separately (we omit the discussion for type A). We realize Σ as in "Planches" of Bourbaki [2]. Without losing any generality, we may normalize J in the following forms. If Σ is of type B_{ℓ} or $C_{\ell}, J=\left\{\alpha_{1}, \alpha_{3}, \cdots, \alpha_{2 m-1}, \alpha_{n}, \alpha_{n+1}, \cdots, \alpha_{\ell-1}, \alpha_{\ell}\right\}, 2 m<n$. We put $n=\ell+1$ if $\alpha_{\ell} \notin J$. If Σ is of type $D_{\ell}, J=\left\{\alpha_{1}, \alpha_{3}, \cdots, \alpha_{2 m-1}\right\} \cup J_{1}$, where $J_{1}=\left\{\alpha_{n}, \alpha_{n+1}, \cdots, \alpha_{\ell-1}, \alpha_{\ell}\right\}, 2 m<n,\left|J_{1}\right| \geq 4$ and even, or $J_{1}=\emptyset, 2 m \leq \ell-1$ or $J_{1} \subseteq\left\{\alpha_{\ell-1}, \alpha_{\ell}\right\}, 2 m<\ell-1$.

Under these normalizations, w_{J} acts as -1 on J. Hence (3) is a necessary condition for the unitarizability.

Theorem 6. Assume \boldsymbol{G} is of type Y_{ℓ} and let $\chi \in X_{w_{J}}^{i}$, where $Y=B, C$ or D. Then $\pi(\chi)$ is unitarizable if and only if the conditions (3) and (Y) are satisfied. Here
(B) $\chi\left(a_{\alpha_{\ell}}\right)>0$ if $\alpha_{\ell} \in J, \chi\left(a_{\alpha_{2 m-1}}\right)>0$ if $\alpha_{\ell} \notin J$.
(C) The number of indices i such that $\chi\left(a_{2 \varepsilon_{i}}\right)<0, n \leq i \leq \ell$, is even.
(D) $\quad \chi\left(a_{\alpha}\right)>0$ for any $\alpha \in J_{1}$.

We can prove this theorem by induction on $|J|$ applying Proposition 5 and its variants.
6. Let $\chi \in X$. Then $\pi(\chi)$ is of finite length and has a unique spherical constituent π_{α}^{1} (cf. [3]). Let \boldsymbol{P} be the set of all $\chi \in X$ such that π_{α}^{1} is unitarizable. Then \boldsymbol{P} is a compact subset of X which is stable under W.

Theorem 7. Assume \boldsymbol{G} is of classical type and let $\chi \in X$. If $\pi(\chi)$ is irreducible and unitarizable, then χ belongs to the closure of $\boldsymbol{P} \cap X^{i}$.

Since we have determined $\boldsymbol{P} \cap X^{i}$ explicitly by Theorem 6, this completes the determination of unitarizability of $\pi(\chi), \chi \in X$, when $\pi(\chi)$ is irreducible.

References

[1] A. Borel and N. Wallach: Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups. Princeton University Press (1980).
[2] N. Bourbaki: Groupes et algèbres de Lie. chap. IV, V, VI. Hermann, Paris (1968).
[3] P. Cartier: Representations of p-adic groups. Proc. Symposia in Pure Math., 33, part 1, pp. 111-155 (1979).
[4] W. Casselman: The unramified principal series of \mathfrak{p}-adic groups I. The spherical function. Compositio Math., 40, 387-406 (1980).
[5] W. Casselman: Introduction to the theory of admissible representations of \mathfrak{p}-adic reductive groups (preprint).
[6] R. Steinberg: Lectures on Chevalley groups. Yale University Lecture notes (1967).
[7] H. Yoshida: On the unitarizability of principal series representations of \mathfrak{p}-adic Chevalley groups (preprint).

