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60. On Affine Surfaces whose Cubic Forms are Parallel
Relative to the Affine Metric”

By Martin A. MAGID® and Katsumi NOMIZU**)

(Communicated by Kosaku YosipA, M. J. A., Sept. 12, 1989)

Let M" be a nondegenerate affine hypersurface in affine space R**! and
denote by F, k and F the induced connection, the affine metric, and the Levi-
Civita connection for 7, respectively. (We follow the terminology of [4].)
Let C=Fh be the cubic form.

It is a classical theorem that if C=0, then M" is a quadratic hypersur-
face. In [5], it is shown that for n=2 the condition F'C =0, C-£0 charac-
terizes, up to an equiaffine congruence, a Cayley surface, namely, the graph
of the cubic polynomial z=xzy—¥°/3. For an arbitrary dimension, [1] has
shown that the tensor FC is totally symmetric (i.e. symmetric in all its in-
dices) if and only if FC is totally symmetric, and this symmetry condition
implies that M* is an affine hypersphere. It is also shown that the condition
VC=0, C+0 implies that M" is an improper affine hypersphere such that
h is hyperbolic metric and the Pick invariant J is 0. As for the case n=2,
affine spheres M*® whose affine metric % is flat have been completely deter-
mined in [3], although the case where % is elliptic was already done in [2].

In this note, we study affine surfaces with the property /C=0, C+0,
and prove the following classification.

Theorem. If a nondegenerate affine surface in R® satisfies VC=0,
C+0, then it is equiaffinely congruent to a piece of one of the following
surfaces:

1) the graph of z=1/xy (h: elliptic);

2) the graph of z=1[/(@*+y*) (h: hyperbolic and J+0);

38) Cayley surface (h: hyperbolic and J=0).

The proof is given along the following lines. First, from the results
quoted from [1] we see that the surface is an affine sphere. Next, we show
that the assumption of the theorem implies that the connection /' is flat by
using the argument similar to that in [5]. Now the result in [3] leads to
our classification by using a concrete procedure to show that the graph of
z=2y+¢(y), where ¢ is an arbitrary cubic polynomial, is equiaffinely con-
gruent to the Cayley surface.

Proof of the theorem. Step 1. We show that VC=0 implies that M?
is an affine sphere. Indeed, from [1] we know that I’C is totally symmetric,
and this implies our asgertion.
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Step 2. We show that P'C=0, C+0, implies that / is flat.

We can follow the arguments in the proof of Lemma 3 in [5] with a
slight modification. In the case where % is elliptic or where % is hyperbolic
and J=£0, we have the same arguments to conclude that the holonomy group
of // is a finite group and hence the curvature tensor B of F is identically 0,
that is, & is flat.

In the case where 7 is hyperbolic and J =0, we know (proof of Lemma
3, [5]) that we can locally find vector fields X and Y such that

(1) MX,X)=0, MX,Y)=1, and r(Y,Y)=0

(2) CX,U,V)=0 for any vector fields U and V
(3) CcY,Y, Y)=1.

Now applying covariant differentiation //, to (2) and (3) we obtain
(4) VeX=2X and F,Y=pX.

Applying V', to h(X, Y)=1, and using (4), we obtain /', X=0. Also, apply-
ing Vy to h(Y, Y)=0 and using (4), we obtain / vY=0. Thus

(5) V,X=0 and /,Y=0.

Similar to (4) we get

(6) VyX=yX and F,Y=cX.

Applying V/, to k(X,Y)=1 and h(Y, Y)=0 and using (6) we obtain
(7) V,X=0 and F,Y=0.

From (5) and (7) we see that / is flat.

Step 8. We continue the case where % is hyperbolic and J=0 to show
that I is also flat (so M? is an improper affine sphere) and that FC is also 0.
From what we know, we also get [X, Y]=F,Y—F,X=0. Thus we may
find a local coordinate system {z, y} such that X =4/0x and Y=4/0y. This
means that {z, y} are flat null coordinates for V. Writing «, 2* for z, ¥y, we
see that the components of the cubic form C are all zero except C,,,. Since
VC=0, we see

0=(7yC)(Y,Y, Y)=YCuy=0Css/ 0¥,
and similarly 9C,,/dx=0. Thus C,, is a constant.
For the difference tensor K : K(U, V)=V ,V—V,V, we know

WEU, V), W)= mé—c(U, v, W).
Using this, we find
(8) V. X=F ,Y=F,X=0 and F,Y= ——;—CmX.

It follows that the curvature tensor K of I/ is 0 and so I is also flat. It fol-
lows that M? is an improper affine sphere. Furthermore, using constancy
of C,,, and (8), we conclude /C =0.

Step 4. We have thus shown that M? is an affine sphere and % is flat.
From the results in [3], M® must be either

1) the graph of z=1/xy (if & is ellptic)
or

2) the graph of z=1/(2*+y* (if h is hyperbolic and J=0)



No. 7] On Affine Surfaces 217

or

3x) the graph of z=xy+¢(y), where ¢ is an arbitrary function of y
(if 2 hyperbolic and J=0).

The surfaces 1) and 2) have the property that FC=0, C+0. In order
to verify this, we may represent the surfaces as in [3] with parameters
which become flat coordinates for the affine metric and see that the Chris-
toffel symbols for the induced connection F/ are constants. Then the Chris-
toffel symbols for the connection / being all 0, we see that the components
of the cubic form are all constants. This implies that YC=0 (but of course
C+0, since the surfaces are not quadrics).

In order to conclude that 3x) above leads to 3) in the theorem under our
assumption 'C =0, we can proceed as follows. In Step 3, we have seen that
the surface satisfies 7C=0. Thus if we appeal to the theorem in [5], we
conclude that it is a Cayley surface. On the other hand, we may take the
following route. For the graph
(9) @, Yr——(@, ¥, 2y +o¥))
we may compute

Jx@/ox)=(1,0,v),  fu(@/0y)=(0,1, 2+¢'())

(8/02) f+(8/02) = (0, 0, 0), (@/0y) f+(8/92)=(0, 0, 1)

©@/0y) f@/0y)=(0, 0, ¢ (¥))
so that we have
Vi0:@02) =V 5,5,(0/0Y) =V 5,5,(0/0x) =V ;,,,(0/0y) =0
1@/3x,8/02)=0, h@/ox,d/oy)=1, h/oy,d/oy)=¢" ().

The affine normal is (0, 0,1) and the surface is an improper affine sphere.
The components of C are 0 except possibly C(3/dy, 9/0y,d/0y)=¢®, and the
component of F'C are 0 except possibly (V,,,,C)(@/0y, d/0y,d/0y)=¢*®. Now
if the surface (9) satisfies VC =0, then it also satisfies 7C =0, thus, ® =0,
that is, ¢(¥) is a cubic polynomial in y. In order to show that the surface
is a Cayley surface, it is sufficient to show the following lemma.

Lemma. The graph of z=xy+¢(y), where ¢ is an arbitrary cubic
polynomial in y, can be mapped onto the graph of z=xy—y*/3 by an
equiaffine transformation of R®.

This can be shown by using a change of variables as in Cardano’s well-
known method of solving a cubic equation. Write o(¥)=ay’+ by*+cy+d.
‘We may find suitable constants p, ¢ and 7 such that

o) =(a"*(y+b/3a))*+py+q.

Let
an T=a "z, Y=a*(y+b/3a), Z=2+0/30)r—py—q,
which define an equiaffine transformation of R®. Then we see that

rY+y =2y+0/3a)x+o(y) —py—q==2
when z=xy+¢(y). In other words, the image of the graph of z=xy-+ ()
by the equiaffine transformation (11) is the graph of z=xy+%*. Now we
can take an equiaffine transformation (z, ¥, 2)—(—3-"%x, — 3%y, z) to change
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the surface to the graph of z=xy—*/3. This completes the proof of the
lemma.

[1]
[2]

[31]
[4]

[56]

References

N. Bokan, K. Nomizu, and U. Simon: Affine hypersurfaces with parallel cubic
forms (to appear).

Li An-Min and G. Penn: TUniqueness theorems in affine differential geometry.
part II, Results in Math., 13, 308-317 (1988).

M. Magid and P. Ryan: Flat affine spheres in R® (to appear).

K. Nomizu: Introduction to Affine Differential Geometry. part I, Lect. Notes,
MPI preprint, p. 37.

K. Nomizu and U. Pinkall: Cayley surfaces in affine differential geometry. MPI
preprint, p. 37.



