## 60. On Affine Surfaces whose Cubic Forms are Parallel Relative to the Affine Metric<sup>1)</sup>

By Martin A. MAGID\*) and Katsumi NoMIZU\*\*)
(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1989)

Let  $M^n$  be a nondegenerate affine hypersurface in affine space  $R^{n+1}$  and denote by  $\Gamma$ , h and  $\hat{\Gamma}$  the induced connection, the affine metric, and the Levi-Civita connection for h, respectively. (We follow the terminology of [4].) Let  $C = \Gamma h$  be the cubic form.

It is a classical theorem that if C=0, then  $M^n$  is a quadratic hypersurface. In [5], it is shown that for n=2 the condition VC=0,  $C\neq 0$  characterizes, up to an equiaffine congruence, a Cayley surface, namely, the graph of the cubic polynomial  $z=xy-y^3/3$ . For an arbitrary dimension, [1] has shown that the tensor VC is totally symmetric (i.e. symmetric in all its indices) if and only if  $\hat{V}C$  is totally symmetric, and this symmetry condition implies that  $M^n$  is an affine hypersphere. It is also shown that the condition VC=0,  $C\neq 0$  implies that  $M^n$  is an improper affine hypersphere such that  $N^n$  is hyperbolic metric and the Pick invariant  $N^n$  is 0. As for the case  $N^n=2$ , affine spheres  $N^n$  whose affine metric  $N^n$  is flat have been completely determined in [3], although the case where  $N^n$  is elliptic was already done in [2].

In this note, we study affine surfaces with the property VC=0,  $C\neq 0$ , and prove the following classification.

**Theorem.** If a nondegenerate affine surface in  $\mathbb{R}^3$  satisfies  $\hat{V}C=0$ ,  $C\neq 0$ , then it is equiaffinely congruent to a piece of one of the following surfaces:

- 1) the graph of z=1/xy (h: elliptic);
- 2) the graph of  $z=1/(x^2+y^2)$  (h: hyperbolic and  $J\neq 0$ );
- 3) Cayley surface  $(h: hyperbolic \ and \ J=0)$ .

The proof is given along the following lines. First, from the results quoted from [1] we see that the surface is an affine sphere. Next, we show that the assumption of the theorem implies that the connection  $\hat{V}$  is flat by using the argument similar to that in [5]. Now the result in [3] leads to our classification by using a concrete procedure to show that the graph of  $z=xy+\varphi(y)$ , where  $\varphi$  is an arbitrary cubic polynomial, is equiaffinely congruent to the Cayley surface.

Proof of the theorem. Step 1. We show that  $\hat{V}C = 0$  implies that  $M^2$  is an affine sphere. Indeed, from [1] we know that VC is totally symmetric, and this implies our assertion.

<sup>†)</sup> Partially supported by NSF Grant DMS 8802664.

<sup>\*)</sup> Department of Mathematics, Wellesley College, Wellesley, MA 02181, USA.

<sup>\*\*</sup> Department of Mathematics, Brown University, Providence, RI 02912, USA.

Step 2. We show that  $\hat{V}C=0$ ,  $C\neq 0$ , implies that  $\hat{V}$  is flat.

We can follow the arguments in the proof of Lemma 3 in [5] with a slight modification. In the case where h is elliptic or where h is hyperbolic and  $J \neq 0$ , we have the same arguments to conclude that the holonomy group of  $\hat{\mathcal{V}}$  is a finite group and hence the curvature tensor  $\hat{\mathcal{R}}$  of  $\hat{\mathcal{V}}$  is identically 0, that is, h is flat.

In the case where h is hyperbolic and J=0, we know (proof of Lemma 3, [5]) that we can locally find vector fields X and Y such that

(1) 
$$h(X, X) = 0, h(X, Y) = 1, \text{ and } h(Y, Y) = 0$$

(2) 
$$C(X, U, V) = 0$$
 for any vector fields  $U$  and  $V$ 

(3) 
$$C(Y, Y, Y) = 1.$$

Now applying covariant differentiation  $\hat{V}_x$  to (2) and (3) we obtain

$$(4) \qquad \hat{\nabla}_X X = \lambda X \quad \text{and} \quad \hat{\nabla}_X Y = \mu X.$$

Applying  $\hat{V}_X$  to h(X, Y) = 1, and using (4), we obtain  $\hat{V}_X X = 0$ . Also, applying  $\hat{V}_X$  to h(Y, Y) = 0 and using (4), we obtain  $\hat{V}_X Y = 0$ . Thus

(5) 
$$\hat{V}_X X = 0 \quad \text{and} \quad \hat{V}_X Y = 0.$$

Similar to (4) we get

(6) 
$$\hat{V}_{Y}X = \nu X$$
 and  $\hat{V}_{Y}Y = \tau X$ .

Applying  $\hat{V}_Y$  to h(X, Y) = 1 and h(Y, Y) = 0 and using (6) we obtain

(7) 
$$\hat{V}_{Y}X=0 \quad \text{and} \quad \hat{V}_{Y}Y=0.$$

From (5) and (7) we see that  $\hat{V}$  is flat.

Step 3. We continue the case where h is hyperbolic and J=0 to show that  $\Gamma$  is also flat (so  $M^2$  is an improper affine sphere) and that  $\Gamma$  is also 0. From what we know, we also get  $[X,Y]=\hat{\Gamma}_xY-\hat{\Gamma}_yX=0$ . Thus we may find a local coordinate system  $\{x,y\}$  such that  $X=\partial/\partial x$  and  $Y=\partial/\partial y$ . This means that  $\{x,y\}$  are flat null coordinates for  $\hat{\Gamma}$ . Writing  $x^1,x^2$  for x,y, we see that the components of the cubic form C are all zero except  $C_{222}$ . Since  $\hat{\Gamma}C=0$ , we see

$$0 = (\hat{V}_Y C)(Y, Y, Y) = Y C_{222} = \partial C_{222} / \partial Y$$

and similarly  $\partial C_{222}/\partial x = 0$ . Thus  $C_{222}$  is a constant.

For the difference tensor  $K: K(U, V) = \nabla_U V - \hat{\nabla}_U V$ , we know

$$h(K(U, V), W) = -\frac{1}{2}C(U, V, W).$$

Using this, we find

(8) 
$$V_X X = V_X Y = V_Y X = 0$$
 and  $V_Y Y = -\frac{1}{2} C_{222} X$ .

It follows that the curvature tensor R of V is 0 and so V is also flat. It follows that  $M^2$  is an improper affine sphere. Furthermore, using constancy of  $C_{222}$  and (8), we conclude VC = 0.

Step 4. We have thus shown that  $M^2$  is an affine sphere and h is flat. From the results in [3],  $M^2$  must be either

1) the graph of z=1/xy (if h is ellptic)

or

2) the graph of  $z=1/(x^2+y^2)$  (if h is hyperbolic and  $J\neq 0$ )

or

3\*) the graph of  $z=xy+\varphi(y)$ , where  $\varphi$  is an arbitrary function of y (if h hyperbolic and J=0).

The surfaces 1) and 2) have the property that  $\hat{V}C=0$ ,  $C\neq 0$ . In order to verify this, we may represent the surfaces as in [3] with parameters which become flat coordinates for the affine metric and see that the Christoffel symbols for the induced connection V are constants. Then the Christoffel symbols for the connection  $\hat{V}$  being all 0, we see that the components of the cubic form are all constants. This implies that  $\hat{V}C=0$  (but of course  $C\neq 0$ , since the surfaces are not quadrics).

In order to conclude that 3\*) above leads to 3) in the theorem under our assumption  $\hat{V}C=0$ , we can proceed as follows. In Step 3, we have seen that the surface satisfies VC=0. Thus if we appeal to the theorem in [5], we conclude that it is a Cayley surface. On the other hand, we may take the following route. For the graph

$$(9) \qquad (x,y) \longmapsto (x,y,xy+\varphi(y))$$

we may compute

$$f_*(\partial/\partial x) = (1, 0, y), \qquad f_*(\partial/\partial y) = (0, 1, x + \varphi'(y))$$

$$(\partial/\partial x) f_*(\partial/\partial x) = (0, 0, 0), \qquad (\partial/\partial y) f_*(\partial/\partial x) = (0, 0, 1)$$

$$(\partial/\partial y) f_*(\partial/\partial y) = (0, 0, \varphi''(y))$$

so that we have

$$\begin{array}{l} V_{\partial/\partial x}(\partial/\partial x) = V_{\partial/\partial x}(\partial/\partial y) = V_{\partial/\partial y}(\partial/\partial x) = V_{\partial/\partial y}(\partial/\partial y) = 0 \\ h(\partial/\partial x, \partial/\partial x) = 0, \quad h(\partial/\partial x, \partial/\partial y) = 1, \quad h(\partial/\partial y, \partial/\partial y) = \varphi''(y). \end{array}$$

The affine normal is (0,0,1) and the surface is an improper affine sphere. The components of C are 0 except possibly  $C(\partial/\partial y,\partial/\partial y,\partial/\partial y)=\varphi^{(3)}$ , and the component of VC are 0 except possibly  $(V_{\partial/\partial y}C)(\partial/\partial y,\partial/\partial y,\partial/\partial y)=\varphi^{(4)}$ . Now if the surface (9) satisfies  $\hat{V}C=0$ , then it also satisfies VC=0, thus,  $\varphi^{(4)}=0$ , that is,  $\varphi(y)$  is a cubic polynomial in y. In order to show that the surface is a Cayley surface, it is sufficient to show the following lemma.

Lemma. The graph of  $z=xy+\varphi(y)$ , where  $\varphi$  is an arbitrary cubic polynomial in y, can be mapped onto the graph of  $z=xy-y^3/3$  by an equiaffine transformation of  $\mathbb{R}^3$ .

This can be shown by using a change of variables as in Cardano's well-known method of solving a cubic equation. Write  $\varphi(y) = ay^3 + by^2 + cy + d$ . We may find suitable constants p, q and r such that

$$\varphi(y) = (a^{1/3}(y+b/3a))^3 + py + q.$$

Let

(11) 
$$\bar{x} = a^{-1/3}x$$
,  $\bar{y} = a^{1/3}(y+b/3a)$ ,  $\bar{z} = z + (b/3a)x - py - q$ , which define an equiaffine transformation of  $\mathbb{R}^3$ . Then we see that

$$\bar{x}\bar{y}+\bar{y}^3=xy+(b/3a)x+\varphi(y)-py-q=\bar{z}$$

when  $z=xy+\varphi(y)$ . In other words, the image of the graph of  $z=xy+\varphi(y)$  by the equiaffine transformation (11) is the graph of  $z=xy+y^3$ . Now we can take an equiaffine transformation  $(x,y,z)\mapsto (-3^{-1/3}x,-3^{1/3}y,z)$  to change

the surface to the graph of  $z=xy-y^3/3$ . This completes the proof of the lemma.

## References

- [1] N. Bokan, K. Nomizu, and U. Simon: Affine hypersurfaces with parallel cubic forms (to appear).
- [2] Li An-Min and G. Penn: Uniqueness theorems in affine differential geometry. part II, Results in Math., 13, 308-317 (1988).
- [3] M. Magid and P. Ryan: Flat affine spheres in  $R^3$  (to appear).
- [4] K. Nomizu: Introduction to Affine Differential Geometry. part I, Lect. Notes, MPI preprint, p. 37.
- [5] K. Nomizu and U. Pinkall: Cayley surfaces in affine differential geometry. MPI preprint, p. 37.