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A Discrepancy Problem with Applications
to Linear Recurrences. II

By P6ter KISS*),) and Robert F. TICHYTM

(Communicated by Shokichi IYANAA, M. .A., June 13, 1989)

This is continued rom [0].
The following result gives an estimation for the discrepancy of a

special s-dimensional sequence (Xn), n=l, 2,.... Let us recall the defi-
nition o the discrepancy D.(x). Generally speaking the discrepancy is a
measure for the distribution behaviour of (x) modulo 1. More precisely
put

A(x,., I) card [n N" {x) e I}
or the number indices n such that the (componentwise) fractional part
of x is contained in a given s-dimensional interval I. Then

D(xn) "=sup
AT(x, I) _lili,N

where the supremum is taken over all s-dimensional subintervals I of
[0, 1] with volume 1II. Thus, if 1II2D, there exists an integer n with
l<=n<=N, such that {x} e I. If D(x) tends to zero (for N-+c) then (Xn)
is called uniformly distributed modulo 1 (cf. [6]).

Theorem 1. Let Yl," ", Y8 be a multiplicatively independent system

of unimodular complex algebraic numbers and let t? be real numbers

defined by
y e (k 1, ., s).

Set t=(t,,..., t,) and let =(w,, ..., ,) be an arbitrary s-tuple of real
numbers. Then the discrepancy of the s-dimensional sequence (x)--
(n0+(o) satisfies the estimate

D(Xn)<=N-for any sufficiently large N, where (0) depends only on the system
yl, .., ys.

Proof. Let m be an arbitrary positive integer. Then by the inequality
of ErdSs-Turn-Koksma (c. [6], p. 116) we have

(1 1 1 le,.<,x> )(9) D(xn)<c, --+ 0<,,_ r(h) --where c, is a constant depending only on the dimension s, the first sum
runs through all integral lattiee points h= (h, .., h,) :/: (0, ., O) with
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hll =max (1 hl, ", hl)<= m, (., } denotes the usual inner product in R
and r(h) is defined by

r(h)- ] max (lhl, 1).
j=l

Using the summation formula of geometric series we obtain

n=l n=l n=l

e<’>-- I 2
e<’>-1 y.--y--l

with y=e (k=l,..., s). Thus we have by Lemma 3

(10) e<’> 2[hc

for [[h[no and a positive constant c only depending on the system
y,, ..., y. Inserting (10) into (9) yields

1 2 Ilhllc )Dv(x)< c --+ ,
o111. r(h) N

1 m(lgm)-)=O(/ N ]mc
for an arbitrary positive constant c with c c.

m [N’/( ’) + 1
we obtain

Choosing

D(x)--O(N-’/(c+) + Nc/(c+’ )=O(N_,/(c+,)<N_N
for sufficiently large N and for any with 0<6<(1/(c+1)). Thus the
proof of Theorem I is complete.

3. Main results. In this section we will apply the one-dimensional
case o Theorem 1 in order to obtain bounds or the approximation o the
characteristic roots by the quotients of subsequent values of second order
linear recursive sequences.

Theorem 2. For any non-degenerate second order linear recurrence
R, for which D<0, there is a constant cO such that

for infinitely many n.

Proof. By (1) and lal=ll we have- -1

() ]R+R a(_1

and by our notation

arg (-) 2w, arg (--) 2t.

Let N be a given positive integer, andD be the discrepancy of the sequence
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(n0+w), n--l, ..., N. Then, by the definition of the discrepancy, we can
choose an integer m with l<m<N such that

(12) 2(0=/ arg (2zk-4- -t) <_ 2D

(13) 2(o=+ arg (2k+ +) < 2D,

where k is a suitable integer. Furthermore we have

a(a a()(14) / =z+z and
b

for some complex numbers z, , with zI=O(D) for ]=1, 2. Hence we
obtain by (11), (12), (13), and (14)

R* l=l.lz--l+s [=l[.(l+O(D)).R -1+z
Thus, by the one-dimensional case of Theorem 1 we have

I- RR* =O(D)= O(N-) <
for any positive constant e<. his completes the roof.

Our final result gives a lower bound for the aroximation by the
quotients of subsequent terms of second order linear reeursive sequences.

Theorem 3. Nor ag o-deeerate eeod order linear
R, o whieh D<O, there i eotat e’>0 eh that

o all Neietlg large .
Proof. Using the notations of the introduction, let z be a complex

number defined by
(lg) z =e(-.
So we can write
(16) e*-z, e
where 0 2<2 and

2 (2+ 1)0+2 --=(2+ 1). arg ()+ arg (a/b)--(2+ 1). arg (--1)

=1 (2+ 1), lo-(2+ 1). lo ll+lo (a/b)-- (2+ 1). log (-- 1)1
with some non-negative integer <+1. But 2=0 holds only for at most
one value of since otherwise / would be a root of unity. hus
if is sueiently large; furthermore , I, a/b, and -1 are algebraic

numbers of degree at most 4 and so by Lemma 1 we have

with a constant e deending on the arameters of the sequence R.
We can rove similarly the inequalities

I-[>-



194 P. KISS and R. F. TICHY [Vol. 65 (A),

and

12-21>n-,.
From these
(17) Im (9 I> n-c
ollows with any c, greater than c, if n is sufficiently large.

By (4), (15), and (16) we get

Rn+ :1o1. .e--I [.
Rn Z e- 1

Now, since Iz1=1]=1, by (17), using Lemma 2 with w=e,
ollows or any sufficiently large n and for any c’ greater than c.
proves Theorem 3.
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