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54. A Discrepancy Problem with Applications
to Linear Recurrences. II

By Péter Kiss*»" and Robert F. TiCHY*®)

(Communicated by Shokichi IYANAGA, M. J. A., June 13, 1989)

This is continued from [0].

The following result gives an estimation for the discrepancy of a
special s-dimensional sequence (x,), n=1,2, --.. Let us recall the defi-
nition of the discrepancy D,(x,). Generally speaking the discrepancy is a
measure for the distribution behaviour of (x,) modulo 1. More precisely
put

Ay(x,, I)=card {n<N: {z,} eI}
for the number indices # such that the (componentwise) fractional part
of z, is contained in a given s-dimensional interval I. Then

Dy(,) :=sup | 4@ D _ 1|,
I N

where the supremum is taken over all s-dimensional subintervals I of
[0, 1I° with volume |I|. Thus, if |I|{=2D,, there exists an integer n with
1<n<N, such that {x,}eI. If D,(x,) tends to zero (for N—co) then (x,)
is called uniformly distributed modulo 1 (cf. [6]).

Theorem 1. Let vy, ---,y, be a multiplicatively independent system
of unimodular complex algebraic numbers and let 6, be real numbers
defined by

Yp=e""% (k=1, ---,9).
Set 6=, ---,0,) and let v=(0,, - -+, 0,) be an arbitrary s-tuple of real
numbers. Then the discrepancy of the s-dimensional sequence (x,)=
(nf+4w) satisfies the estimate
Dy(z,)SN-°
for any sufficiently large N, where 6(>0) depends only on the system
Yy o Yse

Proof. Let m be an arbitrary positive integer. Then by the inequality

of Erdos-Turan-Koksma (cf. [6], p. 116) we have

(9) DN(xn)gcs( 1 + 3 1 _1_ EN:‘ g2 ikhn)

- m  o<ipism r(h) | N a=1
where ¢, is a constant depending only on the dimension s, the first sum
runs through all integral lattice points kh=(h,, - -, h,)#(0, - - -, 0) with
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|k|=max (k) ---,|h,D<m, {-, ) denotes the usual inner product in R*
and (k) is defined by

r(h) =le max (|&,], D.
Using the summation formula of geometric series we obtain

2miCh, T Z 2 im0 +0) Z grindi,0)

n=1 n=1
Q2N ) __ 2
— 2 i 0> __ ‘ ‘yi’rl. .. er__ll
with y,=e*¥ (k=1, ---,s). Thus we have by Lemma 3
(10) reichan) | < 2| o

for ||k|>n, and a positive constant ¢, only depending on the system
Yy -+, Y. Inserting (10) into (9) yields

Dmmgm@n+%%wrm) N>

1 me(log m)s") ( 1 mes )
:oc__;___vA4_=o__
m + N m + N
for an arbitrary positive constant ¢, with ¢,>>¢,. Choosing
m=[NVs*th] +1

we obtain
D, (x,) =O(N~1/(cs+1> + Nca;:]ca‘*'l) ):O(N._l/(ca+l)) <N~

for sufficiently large N and for any § with 0<6<<(1/(¢,+1)). Thus the
proof of Theorem 1 is complete.

3. Main results. In this section we will apply the one-dimensional
case of Theorem 1 in order to obtain bounds for the approximation of the
characteristic roots by the quotients of subsequent values of second order
linear recursive sequences.

Theorem 2. For any non-degenerate second order linear recurrence
R, for which D<O0, there is a constant ¢>0 such that

- B <

for infinitely many n.
Proof. By (1) and |«|=|8| we have

NEC

@
B
o
3(5) -1
and by our notation
a o
arg (—b—) =20, arg <73—) =20r.

Let N be a given positive integer, and D, be the discrepancy of the sequence

R
11 \ n+1 _:
(11) B
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(nf+w), n=1, ---,N. Then, by the definition of the discrepancy, we can
choose an integer m with 1<m <N such that

(12) l 20r+arg (%)m— @rk+ 71— 0x) l <2D,
and

(13) [2w7r+arg' (%)mﬂ—(Zn:k—l— 1r~|—0n)‘ <2D,,
where k is a suitable integer. Furthermore we have

(14) %—(%)m-——z—{—el and —Z—(%)mﬂzé—l—ez

for some complex numbers z, ¢, ¢, with |¢,|=0(D,) for j=1,2. Hence we
obtain by (11), (12), (13), and (14)

Rm+1 z_1+52 — (1 0 D )
l R, Z—1+e, lal-(1+0Dw)).
Thus, by the one-dimensional case of Theorem 1 we have

el | Bet | o p—0@v-y< L.
R, me

for any positive constant ¢<{§. This completes the proof.
Our final result gives a lower bound for the approximation by the
quotients of subsequent terms of second order linear recursive sequences.
Theorem 3. For any non-degenerate second order linear recurrence
R, for which D <0, there is a constant ¢’>0 such that
> 1

ne

:10(1.]

et |52

for all sufficiently large n.

Proof. Using the notations of the introduction, let z be a complex
number defined by

(15) z=elF—r01t,
So we can write
(16) ern0i+2nmi=z.eli,

where 0<21<2r and
A=n2n+1)0+2r0 —n—2k=x
=(2n+1)-arg (o) +arg (a/b)—(2k+1)-arg (—1)
=|@2n+1)-log a—(2n+1)-log |a|+log (a/b) — (2k+1)-log (—1)|
with some non-negative integer k<<n-+1. But 2=0 holds only for at most
one value of n since otherwise «/f would be a root of unity. Thus 20
if »n is sufficiently large; furthermore «, ||, a/b, and —1 are algebraic
numbers of degree at most 4 and so by Lemma 1 we have
[2|>n e
with a constant ¢, depending on the parameters of the sequence R.
We can prove similarly the inequalities
lr—2|>n
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and

|2r—A|>n"c.
From these
an |Im (e*)|>n"c

follows with any ¢, greater than ¢, if » is sufficiently large.
By (4), (15), and (16) we get
—|al- liﬁi—_l
z-e¥—1
Now, since |z|=|e*|=1, by (17), using Lemma 2 with w=¢",

12— | s> a0, Im (@) > n

follows for any sufficiently large n and for any ¢’ greater than c;.
proves Theorem 3.

| Rn+1
R,
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