54. A Discrepancy Problem with Applications to Linear Recurrences. II

By Péter Kiss*),t) and Robert F. Tichy**)
(Communicated by Shokichi Iyanaga, M. J. A., June 13, 1989)

This is continued from [0].
The following result gives an estimation for the discrepancy of a special s-dimensional sequence $\left(x_{n}\right), n=1,2, \cdots$ Let us recall the definition of the discrepancy $D_{N}\left(x_{n}\right)$. Generally speaking the discrepancy is a measure for the distribution behaviour of $\left(x_{n}\right)$ modulo 1. More precisely put

$$
A_{N}\left(x_{n}, I\right)=\operatorname{card}\left\{n \leqq N:\left\{x_{n}\right\} \in I\right\}
$$

for the number indices n such that the (componentwise) fractional part of x_{n} is contained in a given s-dimensional interval I. Then

$$
D_{N}\left(x_{n}\right):=\sup _{I}\left|\frac{A_{N}\left(x_{n}, I\right)}{N}-|I|\right|,
$$

where the supremum is taken over all s-dimensional subintervals I of $[0,1]^{s}$ with volume $|I|$. Thus, if $|I| \geqq 2 D_{N}$, there exists an integer n with $1 \leqq n \leqq N$, such that $\left\{x_{n}\right\} \in I$. If $D_{N}\left(x_{n}\right)$ tends to zero (for $N \rightarrow \infty$) then (x_{n}) is called uniformly distributed modulo 1 (cf. [6]).

Theorem 1. Let y_{1}, \cdots, y_{s} be a multiplicatively independent system of unimodular complex algebraic numbers and let θ_{k} be real numbers defined by

$$
y_{k}=e^{2 \pi i \theta_{k}} \quad(k=1, \cdots, s) .
$$

Set $\theta=\left(\theta_{1}, \cdots, \theta_{s}\right)$ and let $\omega=\left(\omega_{1}, \cdots, \omega_{s}\right)$ be an arbitrary s-tuple of real numbers. Then the discrepancy of the s-dimensional sequence $\left(x_{n}\right)=$ $(n \theta+\omega)$ satisfies the estimate

$$
D_{N}\left(x_{n}\right) \leqq N^{-\delta}
$$

for any sufficiently large N, where $\delta(>0)$ depends only on the system y_{1}, \cdots, y_{s}.

Proof. Let m be an arbitrary positive integer. Then by the inequality of Erdös-Turán-Koksma (cf. [6], p. 116) we have

$$
\begin{equation*}
D_{N}\left(x_{n}\right) \leqq c_{s}\left(\frac{1}{m}+\sum_{0<\|n\| \leqq m} \frac{1}{r(h)}\left|\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i\left\langle h, x_{n}\right\rangle}\right|\right), \tag{9}
\end{equation*}
$$

where c_{s} is a constant depending only on the dimension s, the first sum runs through all integral lattice points $h=\left(h_{i}, \cdots, h_{s}\right) \neq(0, \cdots, 0)$ with

[^0]$\|h\|=\max \left(\left|h_{1}\right|, \cdots,\left|h_{s}\right|\right) \leqq m,\langle\cdot, \cdot\rangle$ denotes the usual inner product in \boldsymbol{R}^{s} and $r(h)$ is defined by
$$
r(h)=\prod_{j=1}^{s} \max \left(\left|h_{j}\right|, 1\right) .
$$

Using the summation formula of geometric series we obtain

$$
\begin{aligned}
\left|\sum_{n=1}^{N} e^{2 \pi\left\langle\left\langle h, x_{n}\right\rangle\right.}\right| & =\left|\sum_{n=1}^{N} e^{2 \pi i\langle h, n \theta+\omega\rangle}\right|=\left|\sum_{n=1}^{N} e^{2 \pi i n\langle h, \theta\rangle}\right| \\
& =\left|\frac{e^{2 \pi i N\langle h, \theta\rangle}-1}{e^{2 \pi i\langle h, \theta\rangle}-1}\right| \leqq \frac{2}{\left|y_{1}^{h_{1}} \cdots y_{s}^{h_{s}}-1\right|}
\end{aligned}
$$

with $y_{k}=e^{2 \pi i \theta_{k}}(k=1, \cdots, s)$. Thus we have by Lemma 3

$$
\begin{equation*}
\left|\sum_{n=1}^{N} e^{2 \pi i\left\langle h, x_{n}\right\rangle}\right| \leqq 2\|h\|^{c_{2}} \tag{10}
\end{equation*}
$$

for $\|h\|>n_{0}$ and a positive constant c_{2} only depending on the system y_{1}, \cdots, y_{s}. Inserting (10) into (9) yields

$$
\begin{aligned}
D_{N}\left(x_{n}\right) & \leqq c_{s}\left(\frac{1}{m}+\sum_{0 \leqq\|h\| \leq m} \frac{2}{r(h)} \cdot \frac{\|h\|^{c_{2}}}{N}\right) \\
& =O\left(\frac{1}{m}+\frac{m^{c_{2}}(\log m)^{s-1}}{N}\right)=O\left(\frac{1}{m}+\frac{m^{c_{3}}}{N}\right)
\end{aligned}
$$

for an arbitrary positive constant c_{3} with $c_{3}>c_{2}$. Choosing

$$
m=\left[N^{1 /\left(c_{3}+1\right)}\right]+1
$$

we obtain

$$
D_{N}\left(x_{n}\right)=O\left(N^{-1 /\left(c_{3}+1\right)}+\frac{N^{c_{3} /\left(c_{3}+1\right)}}{N}\right)=O\left(N^{-1 /\left(c_{3}+1\right)}\right)<N^{-\delta}
$$

for sufficiently large N and for any δ with $0<\delta<\left(1 /\left(c_{2}+1\right)\right)$. Thus the proof of Theorem 1 is complete.
3. Main results. In this section we will apply the one-dimensional case of Theorem 1 in order to obtain bounds for the approximation of the characteristic roots by the quotients of subsequent values of second order linear recursive sequences.

Theorem 2. For any non-degenerate second order linear recurrence R, for which $D<0$, there is a constant $c>0$ such that

$$
||\alpha|-| \frac{R_{n+1}}{R_{n}} \|<\frac{1}{n^{c}}
$$

for infinitely many n.
Proof. By (1) and $|\alpha|=|\beta|$ we have

$$
\begin{equation*}
\left|\frac{R_{n+1}}{R_{n}}\right|=|\alpha| \cdot\left|\frac{\frac{a}{b}\left(\frac{\alpha}{\beta}\right)^{n+1}-1}{\frac{a}{b}\left(\frac{\alpha}{\beta}\right)^{n}-1}\right| \tag{11}
\end{equation*}
$$

and by our notation

$$
\arg \left(\frac{a}{b}\right)=2 \omega \pi, \quad \arg \left(\frac{\alpha}{\beta}\right)=2 \theta \pi .
$$

Let N be a given positive integer, and D_{N} be the discrepancy of the sequence
$(n \theta+\omega), n=1, \cdots, N$. Then, by the definition of the discrepancy, we can choose an integer m with $1 \leqq m \leqq N$ such that

$$
\begin{equation*}
\left|2 \omega \pi+\arg \left(\frac{\alpha}{\beta}\right)^{m}-(2 \pi k+\pi-\theta \pi)\right| \leqq 2 D_{N} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|2 \omega \pi+\arg \left(\frac{\alpha}{\beta}\right)^{m+1}-(2 \pi k+\pi+\theta \pi)\right| \leqq 2 D_{N} \tag{13}
\end{equation*}
$$

where k is a suitable integer. Furthermore we have

$$
\begin{equation*}
\frac{a}{b}\left(\frac{\alpha}{\beta}\right)^{m}=z+\varepsilon_{1} \quad \text { and } \quad \frac{a}{b}\left(\frac{\alpha}{\beta}\right)^{m+1}=\bar{z}+\varepsilon_{2} \tag{14}
\end{equation*}
$$

for some complex numbers $z, \varepsilon_{1}, \varepsilon_{2}$ with $\left|\varepsilon_{j}\right|=O\left(D_{N}\right)$ for $j=1,2$. Hence we obtain by (11), (12), (13), and (14)

$$
\left|\frac{R_{m+1}}{R_{m}}\right|=|\alpha| \cdot\left|\frac{z-1+\varepsilon_{2}}{\bar{z}-1+\varepsilon_{1}}\right|=|\alpha| \cdot\left(1+O\left(D_{N}\right)\right) .
$$

Thus, by the one-dimensional case of Theorem 1 we have

$$
\left||\alpha|-\left|\frac{R_{m+1}}{R_{m}}\right|\right|=O\left(D_{N}\right)=O\left(N^{-\delta}\right)<\frac{1}{m^{c}}
$$

for any positive constant $c<\delta$. This completes the proof.
Our final result gives a lower bound for the approximation by the quotients of subsequent terms of second order linear recursive sequences.

Theorem 3. For any non-degenerate second order linear recurrence R, for which $D<0$, there is a constant $c^{\prime}>0$ such that

$$
\left||\alpha|-\left|\frac{R_{n+1}}{R_{n}}\right|\right|>\frac{1}{n^{c^{\prime}}}
$$

for all sufficiently large n.
Proof. Using the notations of the introduction, let z be a complex number defined by (15)

$$
z=e^{(\pi-\pi \theta) i} .
$$

So we can write

$$
\begin{equation*}
e^{2 \pi n \theta i+2 \pi \omega i}=z \cdot e^{\lambda i}, \tag{16}
\end{equation*}
$$

where $0 \leqq \lambda<2 \pi$ and

$$
\begin{aligned}
\lambda & =\pi(2 n+1) \theta+2 \pi \omega-\pi-2 k \pi \\
& =(2 n+1) \cdot \arg (\alpha)+\arg (\alpha / b)-(2 k+1) \cdot \arg (-1) \\
& =|(2 n+1) \cdot \log \alpha-(2 n+1) \cdot \log | \alpha|+\log (\alpha / b)-(2 k+1) \cdot \log (-1)|
\end{aligned}
$$

with some non-negative integer $k<n+1$. But $\lambda=0$ holds only for at most one value of n since otherwise α / β would be a root of unity. Thus $\lambda \neq 0$ if n is sufficiently large; furthermore $\alpha,|\alpha|, a / b$, and -1 are algebraic numbers of degree at most 4 and so by Lemma 1 we have

$$
|\lambda|>n^{-c_{4}}
$$

with a constant c_{4} depending on the parameters of the sequence R.
We can prove similarly the inequalities

$$
|\pi-\lambda|>n^{-c_{4}}
$$

and

$$
|2 \pi-\lambda|>n^{-c_{4}}
$$

From these
(17)

$$
\left|\operatorname{Im}\left(e^{\lambda i}\right)\right|>n^{-c_{5}}
$$

follows with any c_{5} greater than c_{4} if n is sufficiently large.
By (4), (15), and (16) we get

$$
\left|\frac{R_{n+1}}{R_{n}}\right|=|\alpha| \cdot\left|\frac{\bar{z} \cdot e^{\lambda i}-1}{z \cdot e^{\lambda i}-1}\right| .
$$

Now, since $|z|=\left|e^{\lambda i}\right|=1$, by (17), using Lemma 2 with $w=e^{\lambda i}$,

$$
\left||\alpha|-\left|\frac{R_{n+1}}{R_{n}} \|>|\alpha| \cdot c_{1} \cdot\right| \operatorname{Im}\left(e^{\lambda i}\right)\right|>n^{-c^{\prime}}
$$

follows for any sufficiently large n and for any c^{\prime} greater than c_{5}. This proves Theorem 3.

Reference*)

[0] P. Kiss and R. F. Tichy: A discrepancy problem with applications to linear recurrences. I. Proc. Japan Acad., 65A, 135-138 (1989).
*) For other references, see [0].

[^0]: t) Research partially supported by Hungarian National Foundation for Scientific Research Grant no. 273.
 *) Teachers' Training College, Department of Mathematics, Eger, Hungary.
 **) Department of Technical Mathematics, Technical University of Vienna, Vienna, Austria.

