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Introduction. Let #>1 and let p,.--,p, be distinct primes in
N={ze€ Z;2>0}, each congruent to 1(mod 4). Let K, be the quadratic
field Q(Wp,- - -p.), and let ©, be the ring of algebraic integers in K,.
It is a famous unsolved problem to give simple conditions on p,, ---, »,
which are necessary and sufficient to ensure that N,(e)=-+1 for every
unit ¢ of ©,. (Here N, is the K,/Q-norm.) Legendre in 1785 showed [3]
that if n=1 there is always an ¢ in O, with N,(¢§)=—1. However, for
n>1, the present state of knowledge is still unsatisfactory. The aim
of this note is to give a simple proof of

Theorem 1. Let n>2 be fized, and let p, ---,p,., be such that
the Legendre symbol (p,;/p.) equals +1 whenever j+k and j, k<n—1.
Then there are infinitely many choices of p, such that N,(c) =+1 for every
unit ¢ of O,.

Theorem 1 answers a generalisation of a question raised by K.
Iwasawa in a recent paper [2] on the capitulation problem. Theorem 1
is not a new result; the case n=2 occurs in work of A. Scholz [6],
while the general case is implicit in work of L. Rédei [5], although his
proof is very complicated. We should perhaps remark that the long
series of papers Rédei over the years 1932-53 still contains almost all
the significant known results on the signs of the N,() (see [5] and the
bibliography (and Chapter III) of [4]). The reader is warned that there
is a serious error in the “analytical” part of [5], which the author hopes
to correct in a forthcoming paper. Our proof of Theorem 1 is quite
simple, relying only on standard properties of biquadratic residues in
Z[i] i=+—=1). For these we refer the reader to the excellent book of
K. Ireland and M. Rosen [1]; all results which we state without proof
are contained in the text and exercises of Chapter 9 of their book.

1. A necessary condition for N,(e=—1. We retain the notation
of the introduction. A number 2 in R=Z[i] is called primary if 1=1
(mod(1+14)%). If peN is prime and p=1 (mod 4) we have p==z, where
z is primary and irreducible, while z is the complex conjugate of r. If
also ¢ is primary irreducible and p=o05, then o=z or 7.

If 7 is primary irreducible and « € R, = f«, the biquadratic residue
symbol («/r), is defined to be the unique power of i=+/—1 such that
(a/7),=a® " (mod x), where p=zz is prime in N, p=1 (mod 4).
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If 2, ne R we write 2~y if and only if =1=p* and 2=/~

Now let p,, - - -, p, be as in the introduction. We choose fixed primary
irreducible #, in R such that p,==;z, A<j<n).

Now let C, be the set of all ordered n-tuples c¢=(c(Q), - -, c(n)),
where each ¢(j)=0 or 1 in Z; we denote by o the n-tuple ¢ where each
c(j)=0.

Finally, let ceC,, k<n. We define
(1. 1) Uln, ey 0= T] @00 550 [ o).,

ji<n

We now prove two simple lemmas.
Lemma 1.1. Let n>1, and suppose that N,(e)=—1 for some ¢ in
©,. Then, for at least one ccC,, we have U, k, c)~1 for all k<n.
Proof. Letee ©,beaunit. Then it is easily seen that & € Z[vp,- - - p.],
&f=z+yVp,- - -p, with 2z,ye€ Z. Suppose that N,(e)=—1. Then
(1.2) N ()=—1=2"—(p,- - - p)V".
By reduction (mod 4) we see that yel1l+2Z and z2=2x, xe€Z, while
42°+1=(p,- - -p)Yy*>1. Hence 2*>0 and, without loss of generality,
x,y€N. Moreover, (2x)’=—1 (mod y), so that every prime factor q of
y in N satisfies ¢=1 (mod 4). (Possibly y=1.) Thus, for some m>0, we
have y=T][™,q%, where the g, are distinct primes=1 (mod 4) and the
e,>1 (s<m). We now work in R=Z[il, (=+v—1). We have ¢,=p,5,, p,
primary irreducible in R, while

(1.3) A+ 1= +1) 2w —1) = ﬁl T, ﬁ1 (05"
= s=
Now, in R, the ideal (2z-+1,2x—17) contains 2¢, hence also 2, hence also 4,
and so 2z+1i,2x—1)=R. Thus, 2x+¢ and 2x—¢ have no common irre-
ducible factor in R, while neither is divisible by (1+%). From this and
(1.8) we see that, for some ¢ € C,, we have 2x+i=1"y, 20 —i=1"*p, where
(1' 4) #: fl'l n-?(f) ﬁ.lj—-c(]') ﬁ o-zes ;
i=1 s

=1
here g, € {p,, p,}, and a € Z, while yR+paR=R and p is primary. From
this we have 2i=iy—i g, from which, on reduction (mod(1+1%)°), we
see that o is odd, and

1.5) +2=p+p.
Now let k<n. We reduce (1.5) (mod (=™ 7;-°*)), obtaining
(1. 6) (i2/7fi(k) ﬁ.}c—c(k))4~ n (n}~0(1) ﬁ?‘(j)/ﬂ'?c(k) ﬁ}c—-c(k))4.

j<n

However, (—1/7),~1~(—1/7), and 2/m) ~ (@ /7 ~ (e[ ) ~ (2] 7y
from which Lemma 1.1 follows.

Lemma 1.2. Let n>1, and suppose that each Legendre symbol
(p,/p) equals +1, for j#k, j, k<n. Then for all ce(C,, k<n, we have
Un, k,c)~U(n, k, 0), where o is the zero vector in C,.

Proof. Let j<m, j#k. We have (z,/n) (7, m).=D,/7)s while
pPP2=1(mod(r,, (resp. 7). Hence (x,/m)~7;/m)i~ (T;/2)i~(7;[7)ss
Lemma 1.2 follows immediately from these relations.
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2. Proof of Theorem 1. Now let n>>2. We assume that p,,---,
D, have been chosen such that the Legendre symbol (p,/p,) equals +1

A

whenever j,k<n—1 and j+#k. If ce(, we denote by ¢ the vector

(ec), - --,em—1)e(C,.,. Now let p, be distinet frem p,, -- -, p,_,. Then,
for every ce (C, and k<<n we have
2.1 U, k, o) =(x, "™ 75 |2 737 ®), U(n—1, k, &),

while Un—1,k, ) ~Un—1, k,6) by Lemma 2.2. We shall choose p, by
specifying z, in terms of congruences (mod r,) and (mod 7,) for the k<n.
We impose on r, the conditions
2.2) (ﬂn/ﬂ1)4"’ (ﬂn/ﬁ1)4~iU(n“‘ 1,1, 9), }

(#n/mp)i~ () 7), When 1<k<n.

Clearly there are infinitely irreducible =, in R which satisfy (2.2),
since there are infinitely many prime ideals of R of residual degree 1
in every ray-class (to any modulus). Suppose now that (2.2) is satisfied.
Then certainly (p,/p,)=+1 for all k<n. Hence, by Lemma 2.2, we have
Umn,k,¢)~U(n, k,0) for all ce(C, and all k<n. However, by (2.2) and
(2.1), we have U(n,1,0)~¢. Thus, by Lemma 1.1, we have N,(e)=+1
for every unit in ©,, and we have proved Theorem 1.
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