4. Invariant Spherical Distributions of Discrete Series on Real Semisimple Symmetric Spaces G_c/G_R

By Shigeru SANO
Department of Mathematics, Shokugyokunren University
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1989)

For real semisimple connected Lie groups G_R , Harish-Chandra discussed in [2] invariant eigendistributions on the groups corresponding to the characters of discrete series. In this paper, we study invariant spherical distributions (=ISD's) of discrete series for the symmetric spaces G_c/G_R and the unitary representations associated to the ISD's, for the complexification G_c of G_R . In [6] and [7, 8], the cases of SL(2,C)/SL(2,R), Sp(2,C)/Sp(2,R) and GL(n,C)/GL(n,R) were treated, where the discrete series appears. In [5] and [9], we discussed general theories for the symmetric spaces G_c/G_R . From these works, we can see that there exists an interesting duality between the series of ISD's on G_c/G_R and those of invariant eigendistributions on G_R in such a way that the discrete series corresponds to the continuous series and vise versa.

§ 1. Invariant spherical distributions of discrete series for G_c/G_R . Assume that G_R has a simply connected complexification G_c . Let σ be an involutive automorphism of G_c such that $(G_c)^\sigma = G_R$, where $(G_c)^\sigma$ is the set of all fixed points of σ in G_c . Put $X = \{g\sigma(g)^{-1} : g \in G_c\}$, then G_c/G_R and X are isomorphic under $G_c/G_R \in gG_R \mapsto g\sigma(g)^{-1} \in X$ as G_c -spaces. Let g_R be the Lie algebra of G_R and g_c its complification.

We assume throughout this paper that the symmetric pair (g_c, g_R) admits a compact Cartan subspace b. In this case, there exists the discrete series for X. Any root of (g_c, b_c) is singular imaginary with respect to g_R (cf. [10, p. 509]). Let $a_1 = \mathfrak{b}, a_2, \dots, a_n$ be a maximal set of Cartan subspaces of (g_c, g_R) , not G_R -conjugate each other. Recall that $X \subset G_c$ and put $A_i = Z_X(\alpha_i)$ and $W^i = N_{G_R}(A_i)/Z_{G_R}(A_i)$ for $1 \le i \le n$. Consider the polynomial in t: $\det((1+t)\operatorname{Id-Ad}(x)) = \sum_{i=0}^{m} t^{i}D_{i}(x)$, $m = \dim \mathfrak{g}_{c}$. Let l be the smallest integer such that $D_{\iota}(x) \not\equiv 0$. The set X' of regular elements in X is an open dense subset of X and $X' = \bigcup_{i=1}^n G_R[A'_i]$ with $A'_i = A_i \cap X$ and $G_R[A'_i] =$ $\bigcup_{g \in G_R} gA_i'g^{-1}$. Since a_1 is compact, the subspace A_1 of X is an abelian connected group. Let A_1^* be the unitary character group of A_1 , then it can be identified with a lattice F in the dual space of $\sqrt{-1}\mathfrak{b}$: for $\lambda \in F$, there exists a unique element a^* of A_1^* such that $\langle a^*, \exp H \rangle = e^{\lambda(H)}$ $(H \in \mathfrak{h})$. Let W be the Weyl group of (g_c, b_c) . For any $w \in W$, there exists an element $\underline{w} \in W^1$ such that $e^{w\lambda(H)} = \langle a^*, \underline{w}(\exp H) \rangle$ for $H \in \mathfrak{b}$. An element $\lambda \in F$ is called regular if $w\lambda \neq \lambda$ for any $w \in W$, $\neq 1$, and the set of all regular elements of F will be denoted by F'. Denote by D(X) the algebra of G_c - invariant differential operators on X. Let $\gamma^{\mathfrak{b}}$ be an isomorphism given in [5, § 3] of D(X) onto $I(\mathfrak{b})$, the set of W-invariant elements of the universal enveloping algebra $U(\mathfrak{b}_c)$ of \mathfrak{b}_c . For $\lambda \in F$, let \mathfrak{X}_{λ} be the homomorphism of D(X) into C given by $\mathfrak{X}_{\lambda}(Z) = \gamma^{\mathfrak{b}}(Z)(\lambda)$ ($Z \in D(X)$). From Theorem 5.1 in [9], we obtain

Theorem 1. Fix an element λ of F. There exists an ISD Θ_{λ} satisfying the following conditions:

- (i) $Z\Theta_1 = \chi_1(Z)\Theta_1$ for any $Z \in D(X)$,
- (ii) $\sup\{|D_{\iota}(x)|^{1/4}|\Theta_{\lambda}(x)|: x \in X'\} < \infty$,

(ii) are naturally satisfied).

(iii) $\Theta_{\iota}(a) = \{\sum_{w \in W} e^{w \iota (\log a)}\} |D_{\iota}(a)|^{-1/4} \ (a \in A'_1).$

In case $\lambda \in F'$, Θ_{λ} is determined uniquely and the support of Θ_{λ} is contained in the closure of $G_R[A_1']$. For general $\lambda \in F$, the G_R -invariant analytic function $\Theta_{\lambda}(a)$ on $G_R[A_1']$ given by (iii) determines an ISD on X by $\Theta_{\lambda}(f) = \int_{G_R[A_1]} f(x)\Theta_{\lambda}(X)dx$ ($f \in C_c^{\infty}(X)$), where dx is a G_C -invariant measure on X ((i),

§ 2. Tempered invariant spherical distributions. Let θ be a Cartan involution of \mathfrak{g}_c commuting with σ and $\mathfrak{g}_c=\mathfrak{k}+\mathfrak{p}$ be the corresponding Cartan decomposition. Denote by $B(\cdot)$ the Killing form of \mathfrak{g}_c . Put $\mathfrak{g}_R^a=(\mathfrak{g}\cap\mathfrak{k})+(\sqrt{-1}\,\mathfrak{g}\cap\mathfrak{p})$. We fix a maximal abelian subspace \mathfrak{a} of $(\sqrt{-1}\,\mathfrak{g}_R)\cap\mathfrak{p}$ and choose a positive root system Σ^+ of $(\mathfrak{g}_R^a,\mathfrak{a})$. Put $\mathfrak{a}^+=\{X\in\mathfrak{a}: \alpha(X)\geq 0 \}$ for all $\alpha\in\Sigma^+\}$ and $A^+=\exp\mathfrak{a}^+$. Let K be the analytic subgroup of G_c corresponding to \mathfrak{k} , then $G_c=KA^+G_R$. For any $g\in G_c$, there exists a unique element X of \mathfrak{a}^+ such that $g\in K(\exp X)G_R$. Then, for $x=g\sigma(g)^{-1}\in X$, we define functions $\tau(x)$ and E(x), on X by $\tau(x)=-B(X,\theta(X))$, $E(x)=e^{\rho(X)}$, where $\rho=(1/2)\sum_{\alpha>0}m_\alpha\cdot\alpha$, $m_\alpha=\dim\mathfrak{g}_c(a:\alpha)$. For $f\in C(X)$, put

$$\nu_r(f) = \sup_{x \in X} (1 + \tau(x))^r \Xi(x)^{-1} |f(x)| \qquad (r \in \mathbf{R}).$$

For $X \in \mathfrak{g}$, we associate a differential operator on X as

$$f(X; x) = \frac{d}{dt} f(\exp(tX) \cdot x \cdot \sigma(\exp tX)^{-1})|_{t=0} (f \in C^{\infty}(X)).$$

Extend this correspondence to $U(\mathfrak{g}_c)$ and put $\nu_{r,D}(f) = \nu_r(f(D;x))$ $(D \in U(\mathfrak{g}_c))$. We define the space of rapidly decreasing functions on X by

$$\mathcal{S}(X) = \{ f \in C^{\infty}(X) : \nu_{r,D}(f) < \infty \text{ for } r \in R \text{ and } D \in U(\mathfrak{g}_c) \}.$$

A distribution on X is called tempered if it can be extended continuously to S(X).

Theorem 2. The ISD Θ_{λ} ($\lambda \in F$) given in Theorem 1 is tempered.

For a finite dimensional irreducible representation δ of K, let ξ_{δ} denote its character and $d(\delta)$ its degree. Put

$$(\delta * f)(x) = d(\delta) \int_{\mathbb{R}} \xi_{\delta}(k^{-1}) f(k^{-1}x\sigma(k)) dk \qquad (f \in C(X))$$

where dk is a Haar measure on K. Let δ^* be the contragredient representation of δ , and for any distribution Θ on X, define a distribution Θ_{δ} by $\Theta_{\delta}(f) = \Theta(\delta * f) \ (f \in C_c^{\infty}(X)).$

Theorem 3. Let Θ_{λ} be the ISD given in Theorem 1, then $\Theta_{\lambda,\delta} \in L^2(X)$ for $\lambda \in F'$.

Let \mathcal{R} be the representation of G_c on $L^2(X)$ defined by $[\mathcal{R}_q f](x) = f(g^{-1}x\sigma(g))$ $(f \in L^2(X))$. Let V^{λ} denote the \mathcal{R} -stable minimal closed subspace of $L^2(X)$ spanned by $\Theta_{\lambda,\delta}$. The restriction of \mathcal{R} to V^{λ} is denoted by T^{λ} . We can prove that T^{λ} is irreducible.

§ 3. Representations of discrete series for G_C/G_R . Let B_0 be the analytic subgroup of G_C corresponding to $\mathfrak{b}_0 = \sqrt{-1}\,\mathfrak{b}$ and M the centralizer of B_0 in K, then $M = A_1$. For $\lambda \in F$, there exists an irreducible representation σ_λ of M such that $\sigma_\lambda(\exp H) = e^{\lambda(H)}$ $(H \in \mathfrak{b})$. MB_0 is a Cartan subgroup of G_C . Let $P = MB_0N$ be a Borel subgroup of G_C . For a complex valued linear form μ on \mathfrak{b}_0 , let ξ_μ be the character of B_0 defined by $\xi_\mu(\exp X) = e^{\mu(X)}$ $(X \in \mathfrak{b}_0)$. The unitary representation of G_C induced from the representation $\sigma_\lambda \otimes \xi_\mu \otimes 1$ of P is denoted by $\pi_{\lambda,\mu}$.

Theorem 4. For any $\lambda \in F'$, the irreducible unitary representation T^{λ} of G is equivalent to $\pi_{2\lambda,0}$.

For the symmetric spaces Sp(2, C)/Sp(2, R) and GL(n, C)/GL(n, R) in [7, 8], these ISD's cover exactly the discrete part of the Fourier inversion formula. In general, they correspond to the discrete series given in [4].

References

- [1] J. Dixmier: Algèbres Envelloppantes. Gauthier-Villars, Paris (1974).
- [2] Harish-Chandra: Discrete series for semisimple Lie groups. II. Acta Math., 116, 1-111 (1966).
- [3] T. Hirai: Invariant eigendistributions of Laplace operators on real simple Lie groups. II. Japan. J. Math., 2, 27-89 (1976).
- [4] T. Oshima and T. Matsuki: A description of discrete series for semisimple symmetric spaces. Advanced Studies in Pure Math., 4, 331-339 (1984).
- [5] S. Sano and N. Bopp: Distributions sphériques invariantes sur l'espace semisimple G_{C}/G_{R} . RIMS Kôkyûroku, **598**, 117–180 (1986).
- [6] S. Sano and J. Sekiguchi: The Plancherel formula for SL(2, C)/SL(2, R). Scient. Papers of the College of General Education, Univ. of Tokyo, 30, 93-105 (1980).
- [7] S. Sano: Some properties of spherical distributions on $Sp(2, \mathbb{C})/Sp(2, \mathbb{R})$. Bull. of the Institute of Vocational Training, 13, 111-116 (1984).
- [8] —: Invariant spherical distributions and the Fourier inversion formula on $GL(n, \mathbf{C})/GL(n, \mathbf{R})$. J. Math. Soc. Japan, 2, 191-218 (1984).
- [9] —: Distributions sphériques invariantes sur l'espace semisimple et son dual. Lect. Notes in Math., vol. 1243, Springer-Verlag, Berlin (1985).
- [10] —: Une intégral invariante sur l'algèbre de Lie symétrique semi-simple. Advanced Studies in Pure Math., 14, 449-517 (1988).