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1. Nonlinear Eigenvalue Problem du-+ie*=0 on Simply
Connected Domains in R*

By Takashi SUzUKI*) and Ken’ichi NAGASAKI**)

(Communicated by Kosaku YosIpa, M. J. A,, Jan. 12, 1989)

§1. Introduction and results. In the previous work [3, 4], we
studied the connectivity of the branch of minimal solutions C starting
from (2, u)=(0, 0) and that of Weston-Moseley’s large solutions C* as 2|0
([6, 2]) for the nonlinear eigenvalue problem
1.1 —du=2¢* (in Q) and u=0 (on 9Q2),
where 1 is a positive constant, QCR® is a simply-connected bounded do-
main with smooth boundary 32, and u € C*(2) N C%(2) is a classical solution.
We have established the connectivity of C and C* when 2 is close to a
disc. In this note, we shall refine the result and give an explicit criterion
for 2 to have such a property for (1.1).

Our basic idea was to parametrize the solutions Z=7(u, 1) of (1.1)

through s:lj e*dr. Thus we introduce the nonlinear mapping &=
2

Oh,s): XxR-Y by @(h, 8)=T(du+ Ae*, J e*dx—(s/2) for h="(u,2) and
2

seR,, where X="(XxR,) and ¥ =7(Y X R) with X=C2*«(2)={v ¢ C***(2)|
v=0on 92} and Y =C«2) for 0<a<1. For this mapping we claim that

Theorem 1. For each zero-point (h,s) of @, the linearized operator
d,O(h, s): X—Y is invertible provided that 0<s<8z.

Since the a priori estimates ||u|goz<—2log(1—(s/8%)) and s|Q]|!
exp (| %]lgoz) <A=<2 hold if 0<s<8z for some 1=1i(2), the first part of the
following theorem follows immediately from the above one. On the other
hand the latter part holds by the fact that s<<4z and s<8z imply s,(p)>0
and x,(p)>0, respectively, where {u;(p)};-,(— o0 <p(P)<p(P)< - - - —o0) are
the eigenvalues of A,= —4—p under Dirichlet condition for p=2e*:

Theorem 2. In s—h plane, there exists a branch S of zero-points of
O starting from (s, h)=(0,0) and continuing up to s=8x without bending,
and furthermore, there is no other zerc-point of @ other than S in the area
0<s<8zx. The corresponding branch C in A—u plane to S starts from
(2, u)=(0, 0) and bernds at most once.

On the other hand, along the Weston-Moselely’s branch C* of large

solutions, we have from [4] that S Elf e*drx=8r+crna+0(2) as 2| 0, where
Q
C=CQ)=—|a,P+ 3 7/ (n—2))|a, for the normalized Riemann mapping
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g=9y: D={2|<1}-0 with g¢(&)=> 7, a.2" (@,=0). Thus we obtain

Theorem 3. In the case of C<0, Weston-Moseley’s branch C* exists
uniquely and connects with the minimal branch C. The connected branch
C bends just once in A—u plane.

In fact C<0 implies a=|g4(0)/95(0)I<2, in which case the constrains
for 2 to produce C* are all verified by the method of Wente [5]. We know
that C <0 holds if #|g’|<2 everywhere on 92, where « is the curvature of
952 ([4]). When 2 is a ball, we have «|g’|=1. Incidentally, «a<<2 whenever 2
is convex ([2]). In case C>0 or «>2, multiple Weston-Moseley’s branches
may exist, of which global analysis will be a theme in future.

§2. Proof of Theorem 1. Let ®(h, s)=0 for some he X and se
(0, 87). Then, the linearized operator d,9(%, s) can be regarded as a self-
adjoint operator in 7(L*(Q) X R) with the domain 7(H*N H}(2) X R). The as-
sociated sesqui-linear form € =A( , ) on 7(HYQ) X R) is given for f="(v, k)

and g="(w, p) that UA(f, g)= —a(f, §), where a(v, w)—_—fg {Fv-Fw—povwldx

for p=2¢* and f=f+(x/2) and g=9+@/N e VE{’U e H'(2)|(0/9c)v=0 on a2}
for a unit tangential vector . Thus 0 ¢ p(d,D(R, s)) is equivalent to O e
p(fip), where fip is the self-adjoint operator in L*(R2) associated with alp ..
See [3] for details.

Putting o(4,)={4,(p)};_, with —co <o) <@P)=-- -, we have /,(p)<0
because constant functions belong to V. Furthermore, /,(p)>0 if s>0 is
small. We shall extend this consequence and show that ,(p) >0 whenever
0<s<8r. To this end, we first note that this fact holds when 2=D=

{|#{<1}. In fact, in this case all solutions are parametrized by s=xj e*dx

2
as {(1*(s), u*(s))|0<s<8z} with the property that d,0(h*(s), s) is invertible
for 0<<s<8rz, where 2*(s)="(u*(s), 2*(s)) ([4]). Hence 1,(p*(s))>0 (0<s<8r)
holds for p*(s)=21*(s)e*" ™.

Next, we note that 2(p)>0 is equivalent to 9,(p)>1, where {3,(p)}7,
0=0,(p)<Ly(p)< - - - >+ o) denotes the set of eigenvalues for

(EVP) pe V and j Vgo‘Vde)G=uj~ oXpde for any X € V.
2 2
The first eigenfunction corresponding to 5,(p)=0 for (EVP) is a constant,

8o that we have 9,(p) =Inf {R(v)[’u eV, I vpdx:O} by mini-max principle,
2

where R(v):j \Poldx / f v*pdz. Minimizer ¢ of this variational problem
Q 2

is a second eigenfunction and hence is analytic in 2 and has two nodal do-
mains 2, in 2. At least one of 2. meets 92. Without loss of generality,
we suppose 32_NdR2+ and put ¢, =(+¢)"0. Here we take generalized
Schwarz’ symmetrization ¢* € V* of ¢- ([1]) in use of the cannonical radial

metric p*ds® on D giving 1/2 Gaussian curvature and s=j pdao:J p*dx,
2 D

where V*={ve H'(D)|(3/3r)v=0 on 3D}. Namely, o*(@) =sup {p| v € D}},



No. 1] Nonlinear Eigenvalue Problem 3

where D¥ is the concentric disc in D such that‘[ p*dw:f pdx for D,=
DY D#
{@]g-(@)<p}. Then, we havej Po_Pdu= j V% Pda by ¢_l,0=0 as well as
2 D

L;o_pdx=fp p*p*dx and L goipdx:ID e*'p*dx ([11). On the other hand,
for ¢, we take ¢,, e V* as ¢, x@)=Inf{u|x e A¥}, where A¥ is the con-
centric annulus in D such that 6DCodA¥ andj p*dx:J pdx for A,=
{x|o.(x)>p}. Then, similar properties hold f/ci;;‘ this r;g,rrangement‘).
That is, L ¢+pdx=jp 0. xD*dx, L o pdx =fD ¢ xp*dx and LlVgo,, Pde=

f Vo, «dx. Furthermore, suppo*Nsuppe, 4 is just a circle so that we

D

have for ¢*=g¢,,—¢*e V* that L p*p*dr=0, ID p*'p*da =L ¢'pdx and

I lVgo*zldng [Fo'dx and hence we obtain v,(p) =v,(p*) =Inf {R*(v) [ve V*,
D 2

j vp*dx:O}, where R*(M:J \V'v)ﬁdx/f vp*dz. However p*=2*(s)e™ ™,
D D »
where h*(s)=T(u*(s), 2*(s)) is the radial solution of (1.1) for 2 =D with s=
j p*dw, 8o that 1(p*)>1.
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