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In this note, we present two inequalities or the supremum norm and
the oscillation of a unction satisfying a one-sided Lipschitz condition on
the interval E= [0, 1] and having equal values at the end points. As special
cases o them we obtain two estimates for the -discrepancy of a sequence
of real numbers, with respect o a distribution unction satis2ying a
Lipschitz condition on E. The results generalize some inequalities of
LeVeque [3], Yurinskii [12], Niederreiter ([5], [6]), and Proinov ([7], [8]).

1. Definition 1. A real-valued unction f is said to satisfy the right
Lipschitz condition on E with a positive constant L i
( 1 ) f(x).--f(y)=L(x--y) or x, y e E with xy.
Analogously, f is said to satisfy the left Lipschitz condition if
( 2 ) f(x)--f(y)--L(x--y) or x, y e E with xy.
The function f is said to satisfy the one-sided Lipschitz condition on E
with constant L if either (1) or (2) holds.

It is easy to prove that i a unction satisfies a one-sided Lipschitz
condition on E, then it is a unction o bounded variation on E. For a
bounded unction f on E, we denote by IIfll and [f] its supremum norm
and its oscillation, respectively.

Theorem 1. Let a function f satisfy the one-sided Lipschitz condition
on E with constant L, and let f(0)--f(1) and f gL. Then for any non-
decreasing nonnegative function on [0, c),

,f ,)_L J: (If(x),)dxF((3)

and

(4) 2F(-[f]) gL 1 (If(x)l)dx,

where the function F is defined on [0, c) by

(5) F(x)::()d.
Proof. We shall prove only (4) since (3) can similarly be proved. We

may assume that f satisfies a left Lipschitz condition since the other case
ollows immediately rom this one (replacing f by --f). Now we extend

f on R with period 1. Then it is easy to prove that the extended unction

f satisfies the left Lipschitz condition on the whole real line R with constant
L. First we shall prove that the inequality
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holds for all , e R. With no loss of generality, we may assume that f(a)
f(fl) and aa+l. There are three possible cases" f()Of(fl),
f()>f(fl) 0, and f()<f() 0.

Let f(a)Of(fl). Since f satisfies the left Lipschitz condition on R
with constant L, we have
( 7 ) f(x) f(a)-- L(x-)>0 for x e (, a’),
where a’-- a+ f(a)/L. Therefore

(8)

Analogously, we prove that
( 9 ) f(z) <__f()-t-L(z-- )<0 for x e (’, ),
and

(10) (I f(x) I)dx (1 / L)F(-- f(fl)),

where fl’= fl-f(a)/L. From (7) and (9), we conclude that the intersection
of the intervals (a, a’) and (fl’,

is nondecreasing on [0, ), then F is a convex unction on this interval.
Hence, from (8) and (10), we deduce

2F(-,f()--f(),)--2F( (f()-- f()))
=F(f(a))+ F(-- f(fl))

L

and so (6) is proved in the first ease.

Now leg f(o),f()>O. We have o’=o+f(o)/L<=o-t-1 since Ill I_<= I,.
I-Ienee, we obtain from (8).

F(] f(a)- f(fl)I) gF(f(a))

L (If(x)l)dx

=L f(I f(x) I)dx-- L f(I f(x) I)dx.

From this, we again arrive at (6) since 2F((1/2)x)gF(x) or x0.
In the case f(fl)f(a)_<_0, the inequality (6) can be proved in the same

way as in the previous case.
Now taking supremum on the let-hand side oi (6) over all a, fle E,

and taking into account that f is continuous and nondecreasing, we get the
desired inequality (4). Q.E.D.

Corollary 1. Let a function f stisfy the one-sided Lipschitz condi-
tion on E with constant L. Suppose also that
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f(0)=f(1) and lo f(x)dx--O.
Then for any nondecreasing nonnegative function on [0, c), we have (4).

Proof. According to Theorem 1, it is sufficient to prove that Ilfll<=L.
Let us assume that Ill IL. Then there exists a e E which satisfies either
f(a)L or f(a) L. We treat only the first alternative, the second one
being almost identical. With no loss of generality, we can suppose that f
satisfies a left Lipschitz condition. Now extend f on R with period 1.
Then from (7)and the inequality f(a)L, we conclude that f(x)l(x)O
or x e (a, a+ 1), where is a linear function. Therefore, we have

f(x)dx= f(x)dx l(x)dx>O,

which is a contradiction. Q.E.D.
Corollary 2. Let a function f satisfy the one-sided Lipschitz condi-

tion on E with constant L, and let f(0)=f(1). Then
(11) f]((6L/) ;= (1/h) ]f(h))/,
where

f(h)=.[: exp (2ihx)df(x)

denotes the Fourier-Stilt]ies transform of f.
We note that the well known LeVeque’s inequality (see [3] or [2 p. 111])

is a special case of (11). A result of Niederreiter [5] which improves a
theorem of Elliott [1] and generalizes LeVeque’s inequality is also a special
case of (11).

Proof. Setting in Corollary 1 (x)= x and applying it to the function

f(x)- f: f(t)dt

we obtain

(12) (1/12L)[f]gof(x)dx-- (]o f(x)dx).
This completes the proo of (11) since the right-hand side o (12) is equal to

(1/2) E--1 (1/h) ]f(h)l. Q.E.D.
We note that an inequality of Yurinskii [12] or the closeness of two

distributions (mod 1) is a special case of (3). Another inequality of the
type (11) which generalizes the well known ErdSs-Turn inequality was
given by Proinov in [9].

(to be continued.)
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