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0. Introduction. In this paper we shall study in a complex domain
what sort of conditions on a hypersurface are necessary if a solution of a
given nonlinear partial differential equation with holomorphic coefficients
has regular singularities along this hypersurface and give a simple neces-
sary condition for the equation with polynomial type nonlinearity. As it
is well known, for a linear equation such a hypersurface must be a charac-
teristic hypersurface for the operator. Tsuno [5] showed that for quasi-
linear equations such a hypersurface must be also characteristic for the
linear part of the operator if the solution is not too singular. Recently,
for semi-linear equations Ishii-Kobayashi [2] determined the infimum of
the exponents of regular singularities of solutions which propagate along
characteristic hypersurface for the linear part of the equations. Moreover,
when the exponent is just equal to the infimum, they constructed a solution
which has singularities on an almost any given non-characteristic hyper-
surface. In the real domain, Bony [1] investigated the propagation of
singularities with rather high regularity for quasi-linear equations and
showed that is performed along bicharacteristic curves of the linearized
characteristic equation microlocally. On the other hand, Kobayashi-
Nakamura [4] succeeded in construction of solutions with the same proper-
ties to [2] .for semilinear equations whose principal parts are strictly
hyperbolic.

1. Notations, definitions and a result. Let Z/ denote the set of
all nonnegative integers and D" stands for (3/3z).. .(3/3z,) where =
(, ., a) e (Z/)n. Moreover, let/2 be a domain of C containing the origin
and we denote the set of all holomorphic functions on 9 by (C)(9).

Now we consider the nonlinear partial differential operator P(u) of
differential order m and multiple order p2, which we denote

(1.1) P(u)--ea,(z)((Du)),
where _C is a given subset of

{= (o) e (z+) Il=
with

N=( e (Z+) Il<=m}, a.(z) e
and

((D"u))"--- V[ I,l=< (D"u)""Then we may assume without loss of generality that 11>__1 for any/ e .L.



No. 3] Regular Singularities for Nonlinear Equations 75

For each/ e _L we put
Y,()=II-:oI1 for e C.

Let [-,@y,--y and for a given r e _L’/- denote y or ]rl the common y, or
]p] or any/ e r, respectively. Let ](p)= min {y,(p) ;/ e _} for p e R. Then
the graph of (p) describes a concave polygon which has a finite number,
say R, of summits. We arrange the values of p corresponding to. these
summits in the order aoal... aR_ and call them characteristic expo-
nents of the operator P.

Let C/={--exp (i0);
Definition 1. (1) For a given a e C and a given e C/, a class u e

is called the principal class o P or (a, w) i and only i
Re ((oy,(a)) Re (oy(a)) or any e _\.

(2) For a characteristic exponent ar, 0grgR--1, the set {/ e _;
--(0"r)} is called the principal class for the characteristic exponent fir and
denoted by .

For any z e C and any k e Z, we denote [z" k] z(z-- 1). (z- k+ 1) or
k0, [z" 0]= 1 and [z" k]=0 otherwise.

Definition 2. (1) Let be a principal class or some (a, w)e CC/.

The polynomial
p(s, z, )= a(z)(([s ll])),

of s e C and e Cn, is called the characteristic polynomial or the class o
the operator P.

(2) For every characteristic exponent ar, O_<_r<_R-1, the character-
istic polynomial or the characteristic exponent a o P is defined by the
polynomial

a,(z)(([" ]l])),Z
of e C and Z e C.

Let
(1.2) S={(z)=0}
be a regular hypersurface in 9 through the origin with an irr’educible
defining unction (z) e (C)(/2). For a given e C we design a (z)
(C)(R(2\S)) the set o all holomorphic functions on the covering space R(2\S)
of/2 \S, by the relation
(.3) (z) ((z))

Definition :o For a z’e S, we say a sequence (z} in /2\S is spirally
convergent o exponent w to z’ i.f and only i {z} tends to z’ with the con-
straint larg (z)lK or some K0. We denote this simply by z(,z’.
Moreover, we denote (w, K)-lim, f(z)= A if and only i f(z) converges A

>Zt.or any sequence {z} such that z
Definition 4. Let w e C/, a(z) e )(9) and z(z)0. Then we sy that

u(z) has regular singularities o.f exponent a(z) with spiral exponent o on S
i and only if u(z) has the ollowing ,orm.
(1.4) u(z)=((z))(z)(Fo(z)+F(z)),
where Fo(z) e _)(/2), F0(0)=0, and F(z) is holomorphic on R(9\S) {larg
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K} {0lpl for any K) 0 and some 3=8(K))0 satisfying (o, K)-
lim_, F(z) 0 for any z’ e S.

Now we consider a solution u(z) of the nonlinear partial differential
equation
(1.5) P(u)= 0,
which has regular singularities on S or some a(z) and . Then, what con-
dition should be necessary on S?

Theorem. Suppose that the nonlinear partial differential equation
(1.5) admits a solution (1.4) with regular singularities of exponent a(z) with
spiral exponent o on S= ((z)=0} for an appropriate (z), a(z), Fo(z), Fl(z)
and

Then we have the following statements.
( ) If a(z)zr for any OrR-1 and if is the principal class of

P for (a(0), w), then we have
p((z’), z’, D(z’))= 0 on S.

(ii) If a(z)--ar is a characteristic exponent, then we have
p(z’, D(z’), Fo(z’))= 0 on S.

Remark 1. The above theorem shows us that if a(z)a and if
p(a(z),z,)O, the surface S--((z)--O}, which carries the designated
singularities of the solution, must be an integral surface of the first order
partial differential equation p,(a(z), z, De(z))---0. Since then p(a(z), z, ) is
homogeneous on $, we can see any bicharacteristic curve issuing rom S
keeps staying on S. This phenomenon is similar to that o the linear case
but for the dependency of S on a(z). On the other hand, if a(z) equals
identically a characteristic exponent at, the surface S, which is an integral
surface o the inhomogeneous equation p(z,D(z),Fo(z))--O, intersects to
any bicharacteristic curves transversally.

Remark 2. Since we can prescribe the surface a priori, this is the
case which we may be able to construct a solution o (1.5) satisfying (1.4).
This problem will be treated in [3], affirmatively.

2. Outline ot the proot o the theorem. We show, first, that the
characteristic polynomial p(a, z, ) or p(z, , ) is invariant under any bi-
holomorphic coordinate transformation. This fact admits us to take (z)

zl without loss of generality. Next, we investigate the spiral limit
(2.1) (, K-D-lim, z()+ l"lD"(z()F(z))
for any z’e S, K0 and sufficiently small e0, where F(z)=Fo(z)+F(z)
satisfies the conditions o (1.4). Take a sufficiently small multi-circle
centered at z, z:/:0, whose radius about z equals to lz land represent F(z)
in the orm o iterated integral on this multi-circle. Then we can see by
absolute estimates the value of (2.1) equals to

where , is the Kronecker’s delta. Further, we have
(o,K)-limz, zI’((z))-,((z))=l or 0

or/ e u or/ e _L\, respectively. Then we can show the ollowing lemma.
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Lemma. Let u(z)=((z))()(Fo(z)+Fl(z)) be a function which has a
regular singularities o.f exponent a(z) with spiral exponent o on S {(z)= 0}.
Then we have

(1) If a(z)ar for any r, O=rR-1, and if zr is the principal class
for (a(0), o), it holds that

(o, K)-limz, ((z))-(())P(u(z))=p(a(z’), z’, D(z’))(Fo(z)) II

for any z’ e S and KO.
(2) If a----a for some r, we have for any z’ e S and KO

(0, K)-limz, ((z))-()P(u(z))=p(z’, D(z’), Fo(z’)).
The theorem can be proved easily rom the above lemma and this

completes the proof.
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