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Introduction. To each complex semisimple Lie algebra _q, Jimbo [4]
and Drinfeld [1, 2] associated a Hopf algebra U with a nonzero complex
parameter q. This Hopf algebra, which is called a quantum group by
Drinfeld [2], can be considered as a natural q-analogue of the universal
enveloping algebra U of . In this note, we give an explicit linear basis
of U when --sl/(C). This result can be considered as a natural q-
analogue of the Poincar-Birkhoff-Witt theorem for Usl/(C). As a corol-
lary of this, for q(q-1)=/=0, we can show that Usl/(C) is a left (right)
Noetherian ring, and that Usl/(C) has no zero divisors re0. We also give
a triangular decomposition of a general quantum group U. This is used
in proving our theorem. Details which are omitted here will be published
elsewhere.

1o Let F be a field and F the set of nonzero elements of F. Let
(a)<_,<_ be the Cartan matrix of type A. For q e F such that q=/=l,
let Usl/ be the associative F-algebra with 1 with generators e, f,/c,
liN, and relations

kk; k(lk 1, kk kk
kek;=q,e, kfk;= q-a.f

(1.1)
(1.2)

(1.3)

(.4) i--] =1,
i--] __2
i--] =1,
i--]2.

For l_i<(]_N+ 1, we define inductively the elements e, f, o Usl+, by
e+=e, f+l=f.,

e,=qe,_e_--q-e._e,_ or ]--i2,
f,=qf,_,f_--q-’f_,f,_, lor ]--i2.

(The elements e,, f, were first introduced by Izumi [3], and Jimbo inde-
pendently.)

Let A={(i, ]) eZZ]li, ]N+I}. Define the lexicographic order
on 3 by

(i,])(m,n) ifandonlyif im or i=m,]n.
Now we can state our theorem.

Theorem. Let q e F such that qSl. Then the elements f,n,’’"
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k’ ke 1, l e Z, (m, n)<... <(m,, n), (i, ])<-..fmsns Jl "eitjt)
_

(it, it), form a basis of Uqsl
Remark. We can also give an explicit basis of Uqsl/l where q is a

primitive eighth root of unity.
By defining certain filtration on Usl/, we get the following"
Corollary. If q(qS-1)=/=0, then Uqsl/l is a left (right) Noetherian

ring, and has no zero divisors =/=0.
2. Here we give a triangular decomposition of any quantum group,

which is needed in proving our theorem. Let A=(ai)li, be a symme-
trizable generalized Carton matrix (see [5]). Then there exist nonzero in-
tegers d, l<i<N, such that da=da. For q e F such that q=/=l, let

U be the quantum group associated with A, i.e., U is the associative
F-algebra with 1 with generators e, f, k, l<i<N, and relations (1.1.1),
(1.1.2), (1.1.3), (1.1.4), (1.1.5) in [6]. N (resp. N) be the subalgebra of

U generated by 1, e,..., e (resp. 1, f,...,f). Let H be the sub-
algebra of U.4 generated by k#l, .,

Proposition 1. Uq is isomorphic to Nf(R) Hq(R)N as vector spaces.
The elements k, ..., k, 1, ..., l e Z, form a basis of H. N (resp. N)
is characterized as the F-algebra with 1 with generators ei (resp. f), 1_
iN, and relations (1.1.4) (resp. (1.1.5)) in [6].

Remark. This proposition is an extention of Proposition 2 of [7].
The following proposition is obtained as an immediate consequence of

Proposition 1.
Proposition 2. For IMN, le A’=(a)l,_< be he submatrix of

A. Then the F-subalgebra of U generated by e, f, k, l<i<M, is iso-

morphic to U,, (as Hopf algebras).
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