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1o Introduction. The purpose of this note is to present new gener-
alizations o the celebrated inequalities of ErdSs-Turn [4: p. 114] on
uniform distribution mod 1 and Berry-Esseen [5: p. 285] for the closeness
of two distributions. More precisely, we give some upper bounds for the
supremum norm ]lfll and the oscillation [f] o a real-valued function f in
terms of its modulus of nonmonotonicity and its Fourier-Stieltjes trans-
form. The modulus of nonmonotonicity was introduced by Sendov [9].
For the properties and other applications o this modulus we refer to [9]
and [10].

In Section 3, we generalize and improve all previous versions o the
ErdSs-Turtin inequality which are. due to Fainlelb [2], Elliott [1], Nieder-
reiter and Philipp [6] and the author [8]. Moreover, Theorem 3 implies the
classical ErdSs-Turn inequality (see [4:p. 114]) with constant C=24/,
which is better than the previous one (C=4) obtained by Niederreiter and
Philipp [6].

The results in Section 4 generalize the Berry-Esseen inequality as well
as one of its generalizations obtained by Fainleib [2] (see also Popov [7] for
another form of Fainleib’s inequality). We note that another generaliza-
tion of the Berry-Esseen inequality was obtained by Popov [7].

2. Moduli of nonmonotonicity. Let f be a real-valued unction de-
fined on an interval z/. The modulus of nonmonotonicity of f was defined
by Sendov as follows:

/(f )= sup (If(x)--f(x’)l+[f(x)--f(x")l--[f(x’)--f(x")
x’

_
x<:x

where the supremum is taken over all points x’, x" and x in A satisfying
the above inequalities. Following Sendov [9] we say that the function f is
locally-monotone on z/if

/(f;) ;0 as .0+.
For the properties o locally-monotone unctions one can see [9].

In order to define some subsets o the class o locally-monotone func-
tions, we consider also the ollowing moduli which were defined by
Korneichuk [3: p. 111] as ollows:

o/(f )-- sup (f(x")-- f(x’))
O-<x"-x’

_
and

_(f )-- sup (f(x’)--f(x")),
O;x"-x’

_
where the supremums are taken over all points x’ and x" lying in z/ and
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satisfying the above inequalities. Also we write
(f )--min (o/(f; 3), o_(f; )}.

It is easy to prove that
/(f 3)__<,(f )__<(f ;/) or all 3>= 0,

where w(f; 3) denotes the modulus o continuity of f on the interval z].

We say that the function f is locally-decreasing on z] i
(f;/) ;0 as / 0+.

Analogously, we say that f is locally-increasing on i
_(f;) 0 as -0+.

From the inequality/(f 3),(f 3), it ollows that i f is locally-decreasing
or locally-increasing on z], then it is locally-monotone on this interval.

The function f is said to satisfy the one-sided Lipschitz condition on z]

with constant L i either
/(f; 3)<__L or all 0,

or
_(f;/)__<L3 or all 0.

It is easy to show (see [8]) that i f satisfies a one-sided Lipsehitz condition
on a closed interval , then it is a funetion of bounded variation on this
interval.

3. Generalization of the Erd6s.Turn inequalit]. For a Riemnn-
integrable unetion f on the unit interval [0, 1], we define its Fourier-
Stieltjes transform as ollows"

f(h)=fiedf(x) or heZ.

Theorem 1. Let f be a periodic function with period 1, and let it be
Riemann-integrable on [0, 1]. Then for every positive integer m and every
real a 1, we have

( 10 1) o (1[f](a+l)/ f; u(a--1)" +---- ---- [f(h)l.

Corollary 1. Let p(3) be a monotone increasing function on [0, oo)
with /(0+)--0, and let (F)7 be a sequence of locally-monotone periodic

functions with period 1, each function of which satisfies the inequality

/(F 3)g/(8) or all 30.
Suppose also that

Then

lim fi(h)= 0 for all h e N.

lim [F]-- 0.

It is easy to show that Corollary 1 is a generalization o the sufficient
part o the well known (in the theory of uniform distribution mod 1) Weyl-
Schoenberg criterion (see [4" Chapter 1, Theorem 7.3]).

Theorem 2. Le$ f be as in Theorem 1. Then for every positive inte-
ger m and every real a 1, we have

( (1 1)[f]<(a+__ 1), f;
(a--1) " +-- = f(h)].



No. 10] ErdSs-Turtn and Berry-Esseen Inequalities. I 383

Corollary 2. Let a function f be Riemann-integrable on [0, 1], and
f(0)=f(1). Then for every positive integer m and every real al, we
have the above inequality but with 2(a+ 1) in place of (a+ 1).

Corollory :. Let F and G be distributions in [0, 1]. Then for every
real mO, and every real a 1,

( 8a 1) 2a I(h)--(h)l[F G] <= 2(a+ l)(o (a-1)" +-- __’ h
where (3)= rain {w(F; ), (G 3)}.

This latter corollary improves in various ways a result of Elliott [1:
Theorem 2] and a result of Fainleib [2: Theorem 3]. For example, if we
apply Corollary 3 with a= u/(u2--4), then we get the estimate

[F- G] < 11(--lm) +4
which is a refinement o the above mentioned Fainleib’s theorem.

Theorem :. Let a function f satisfy the one-sided Lipschitz condi-
tion on [0, 1] with constant L, and let f(0)=f(1). Then for every positive
integer m, we have

[f]<24 L+4 5(1 1)
This theorem was proved in [8] with constant 4 in place o 24/. In

[8] we noticed that a result o Niederreiter and Philipp [6: Theorem 1’] is
a consequence o Theorem 3.

4. Generalization of the Berry.tsseen inequality. It is well known
that the ErdSs-Turn inequality can be regarded as a discrete analogue of
the Berry-Esseen inequality. In this section, we give two theorems which
can be regarded as continuous analogues o Theorems 1 and 2, respectively.

For a unction f of bounded variation on (-c, c), we define its
Fourier-Stielt]es transform as ollows"

f(t)=:edf(x) for all real t.

Theorem 4. Let f be a function of bounded variation on (-c, c),
and let f(- oo) f(c) O. Then for every real T0 and every real a1,
we have

fl, a+l.tt(f 32a 1)+a__f(1 1)2 (a--1) "- -- If(t) idt.

Theorem 5. Let f be as in Theorem 4. Then for every real TO
and every real a 1, we have

i]fll<a-t-1 ( 16a 1) ai’(1 1), f; - - If(t)l dt
2 u(a-1) +--

Corollary 4. Let F and G be distribution functions (on the whole real
line). Then for every real TO and every real a l, we have

]F-Gl<a+l(o 16a

" +-- t2 (a- 1)
where o() is defined as in Corollary 3.
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Setting in this latter corollary a=gTr/(g--16) we obtain

which without specified constants is due to Fanleb [2: Theorem 1] (see
also Popov [7: Theorem C]).

Acknowledgement. The author is indebted to Pro. Vasil A. Popov
or very stimulating discussions.

(to be continued.)
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