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(Communicated by K6saku YOSIDA, M. ,l. A., Dec. 12, 1988)

1. Introduction. For the nonrelativistic quantum Hamiltonian of a
spinless particle of mass m, i.e. the nonrelativistic SchrSdinger operator
(1/2m)(-i3--A(x)Y, with magnetic fields, Kato [3] discovered a distribu-
tional inequality, which is now called Kao’s inequality, to attack the prob-
lem of essential selfadjointness. The aim of this note is to establish an
analogous distributional inequality for the Weyl quantized relativistic
Hamiltonian H with magnetic fields to show the essential selfadjointness
of the general Weyl quantized relativistic Hamiltonian
(1.1)
which corresponds to the classical relativistic Hamiltonian (e.g. [4])
(1.2) h(p, x)=h’2(p, x)+(x)----/(p--A(x)Y+m +(x), p e R, x e R.
Here m is a nonnegative constant. The vector and scalar potentials A(x)
(x) are respectively R-valued and R-valued measurable functions in R.
It is assumed that they satisfy"

(1.3) A(x) and f iA(x--y/2)--A(x)l]yl-dy are locallybounded,
O<}yl<

and
(1.4) (a) ii Loo(R ) wih @(a)0 .e.
Fo instance, (1.3) is fulfilled by a locally I-I61der-eontinuous A(a).

2. Statement o{ results. We begin with defining the Weyl quantized
relativistic Hamiltonian /-/ with magnetic fields when A(a) satisfies (1.a).
I A(z) is sufficiently smooth and or instance, satisfies
(2.1) IA(x)lC, xeR, llcrIN,
or N sufficiently large, with a constant C, then it may be defined as the
Weyl pseudo-differential operator H’’"
(2.2) (H’wu)(x)=(2)- RReiX-Ph (P’ -x--Y--)u(y)dydp, u (R).

The integral on the right is an oscillatory integral. Note the condition (2.1)
allows the case of constant magnetic fields. The definition o H or the
general A(x) satisfying (1.3) is based on the Lgvy-Khinchin formula or the

conditionally negative definite unction /p+m"
(2.3) /p2+m =m-- [etp- 1--ipyli,<l]n(dy).

dlyl>O

HereI< is the indicator unction of the set {lYI<I}, and n(dy) is the Ldvy
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measure which is a a-finite measure on R\
It is given by

(2.4b) n(dy)=-/I’( d+l)l2
YI-(/)dY’ m--O,

where K(z) is the modified Bessel unction of the third kind of order , and
/(z) the gamma unction.

Definition. The Weyl quantized relativistic Hamiltonian H corre-
sponding to the symbol h’2(p, x) in (1.2) is defined t be the integral operator:

(2.5) (Hu)(x)=mu(x)-- [e-//u(x+y)--u(x)
lyj>0

--Ittv<y(3-iA(x))u(x)]n(dy), u e (R*).
Of course, H in (2.5) coincides, on (R*), with H’ in (2.2), if A(x)

satisfies (2.1). It is seen that H defines a linear operator in L’(RQ with
domain C(RO, and by the rotational invariance of the L6vy measure n(dy)
that H is symmetric, i.e. (H9, +)-:-(9, H+), 9, + e C(RO. For u e L(R)
the distribution Hu is defined by (Hu, 9)-(u, H9), 9 e C(R*). It can be
shown ([6], [2]) that H, is essentially selfadjoint on C(RO, when both
A(x) and its derivatives 3A(x) up to sufficiently higher order are continuous
and bounded. It has recently been shown by Nagase-Umeda [5] when A(x)
satisfies (2.1). The condition (1.3) is suggested by the path integral repre-
sentation for the semigroup exp [-- t(H’-m)] obtained in [2] (cf. [1])
which is still valid in this case.

The results of the present note are the following two theorems.
Theorem 1. Assume that A(x) and #(x) satisfy (1.3) and (1.4). Then:
(i) H--H+, and, in particular, H, is essentially selfad]oint on

C(RO. (ii) The unique selfad]oint extension of H’2, denoted again by the
same H’2, is bounded from below by m"

The proof of Theorem 1-(i) will be done just in the same way as in

Kato [3], if such a distributional inequality between H and /-A+m as
in Theorem 2 below is established. It may be regarded as Kato’s inequality
for H. Theorem 1-(ii) will also ollow rom the proo of Theorem 2.

Theorem 2. Assume A(x) satisfies (1.3). If v is in L(R) with Hv
in Lo(RO, then
(2.6) Re [(sgn v)Hv] .>_
in the sense of distributions. Here sgn v is a bounded function in R
defined by

(sgn v)(x)-- (Vo(X)/l v(x)I, if v(x)--/= 0,
if v(x)= 0.

3. Sketch of proof of Theorem 2. Suppose first that v is C and L.
Then H’2v is Loo and hence Lo. Using the expression (2.3) of H we can
show

(3.1) Re [(v(x)/v,(x))[Ha-m]v]>_[/--+m-m]v,,
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where v(x)=/Iv(x)[+e, 0. Next, in the general case, let v=p,v where
p(x)=-p(x/3), 0, and p(x) is a nonnegative Ca function with support

in the sphere o radius one about the origin in R and with .[ p(x)dx= 1.

Then v is C and L, so that (3.1) holds or v in place of v. Then we tend
$ 0 first and then e $ 0 to get (2.6). To prove this part, we need to know

that H"2v--+H’2v as $ 0. To this end we must give a kind of integral repre-
sentation or the unction v e L with H’v e Lo to show its regularity.

A ull account o the present note will be published elsewhere.
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