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1. Introduction. Our aim is to extend our previous work [2] and
establish some uniqueness results for spectral and evolutional inverse prob-
lems of multi-dimensional space variables. Thus, let 2 CR" be a bounded
domain with smooth boundary 92 and Pu=V-(aVu)+cu be a second order
formally self-adjoint uniformly elliptic differential operator with smooth
coefficients a=(a,,(x)) and c=c(x) on 2. We consider the parabolic initial
boundary value problem

(1) %:Pu(in%(o,oo)), U)p—y=0, g”bi —F(, t),

Vplon
where 9/0vp=2, ,v,0, ()@ /0x,), v=(v,,) being the outer unit normal vector
on 2. Our concern is to determine the coefficients a=(a,,) and ¢ through
the boundary input F = f(&, £) and output u=u(&,t) (e l,0<t<T), where
T>0 and ['Co with |I'|>0. Hence let Q be a similar elliptic operator and
take the equation

(2) D _Qu(in 20, ), vl=0, V| =F(,1).
ot g |ag

Then, our uniqueness question is formulated as follows: Does

(3) v D=uE,t) (el 0<t<T)

imply Q=P?

2. Reduction to spectral problems. Let P, and Q, be the realiza-
tions in X=L*Q2) of the differential operators P and Q under the Neumann
boundary conditions 4/dvy.=d/dv,.=0, respectively. The eigenvalues and
eigenfunctions of —P, and —Q, are denoted by {2}, {z;} (— o0 <3, <2< ---
=400, —oo Ly <pp< - —+00) and {o}, (¥} (¢slley=IVllzsy=1), re-
spectively. Then, supposing F(¢, t)=nr(®)f(&) with h=£0, we can deduce
(e.g. [2]) from (3) that
(4) r(&, t)=s(,t) (el 0<t<o),

where 7(z, t)=73, e ¥p,(x) Lg 0,8 ) (©)do; and sz, O)=>]; e " () L , &)

- f(&)do,. Taking F(&, t)=F (&, t)=h,(t) f,(§) with h,=0for [ e S, we suppose
the following condition, where J,={j|2,=2} and L,={j|y,=2} for 2e R:
(5) The matrices (@;);cs;1cs and (8;),c1;1es are both of full-rank when

J,#¢ or L,#+¢, where 05;1=‘fw 0, (&) f(&)ds, and .sz:'LQ V(&) f(&)da,.
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From the first condition of (5) and the asymptotic behavior as t—oo of
both sides of (4), we can furthermore deduce for e R, l e S and x ¢ I" that

(6)  T=Li and 3 0@ | o(0f@do= 3 4@ [ 47,

because {p,},c,, and {y},.,, are linearly independent systems on I" from
|I'|>0 and Calder6n’s uniqueness theorem. Therefore, the relation ¢,(x)=
Dwen T p(@)="V,(x) on z e I" for j e J, holds, where {r,} are real numbers.
Hence we recall that (8,),cz,,es is full-rank.

Now we suppose the important assumption that supp f,CI" for each
leS. Then the second relation in (6) reduces to J, .cs,7i¥ jmPmi=Pr for
keJ,and le S again by Calderén’s theorem so that 7(7,,)(7,,)=(5,). Hence
{,;} (G e J) becomes an L*-orthonormal system. Taking ¥, instead of ., we
arrive at
1) A=y, and ¢,(@)=+,(x) for jeN and xzel.

3. Isospectral deformation. For given integer m, we take sufficiently
large 2 and s so that L,(z, y; D=2, {v,(@)—0,@}o,@)2;+2)* e C"(2X 2)
and M, (x, y; D=2, @)fo,¥) — v, @} (e, +D* e C"(@x 2) and put L(z,y)
=(=P,+ 'Lz, y; D) e C"(2,—>D(2) and M(x, y)=(—Q,+)*M,(x,y; 2 e
C™(2,—9D.,(2)). Then, L and M are independent of 2 and s and the first
relations in (7) implies K(z, y)=L(z, y)=M(z, y) € C=(2,—-D,(Q)) N C~(2,—
D" as two elements in 9'(Q X Q) as well as
(8) OK=0 in OxQ2\D and Q2x2\D,
where (= —Q,+Py and D={(z, x) |z ¢ 2} ([2]).

The second relation of (7) implies L,=0 on I X 2 so that K|,,,=0. On
the other hand, the ultra-hyperbolic equation (8) gives QrK =Py K on [' X £

so that Q7K |,,,=0 for 0,1,2, ---. However, we have the identity for 0<¢
< oo that
(9) Fo, =3 L Qrk, ),
m=0 M |
where

F.(x, y)=; e (2o (¥) — ()}

Namely, in the right-hand side of the first equality, the series converges in
D,(2) for each fixed z € 2 to the smooth function F,=F,(x, ¥) in y ¢ 2 given
in the second equality.® Therefore, F,|,,,=0 holds for 0<t<co. Now,
comparing the behavior as ¢—oo, we can conclude that >, ;, ¥, (@) {p,(¥)—
¥ (#)}=0 for 2¢ R and (, y) e ' X 2, and hence ¢,=+, again by Calderén’s
theorem. Thus, we obtain P,=@, as two operators in X, so that the coeffi-
cients of P and @ coincide with each other.

4. Remarks. (i) Sofar we have proved that (7) implies P=¢. This
isregarded as a multi-dimensional version of the Gel’fand-Levitan theory [1].
b Formally, this relation reads as K(,y)=L; {¥j(®)—¢i(@)}oiu)= 2 ¥i(@Xeoiy)—¥+i¥)}

=X (e (y)—(x—y).
2 Formally, this relation reads as ;e v ()ei(¥)—¥i(¥)}= X m,j (E™/m (=25 (%)
) —¥;}
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(ii) Our result suggests that identifiability is guaranteed in most cases
when input and output are taken from the same area. Actually, a similar
method implies the uniqueness in the parabolic inverse problem

10) g—z‘=Pu+h(t)f(x) (in 2X(0, 00)), wley=0, ulg=0

with the output u|,, where o CQ2 is a non-void open subset. Namely, identi-
fiability holds even for this problem under a certain algebraic condition as
(5) if A==0 and supp fCo.
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