102. On an Extension of the James-Whitehead Theorem about Sphere Bundles over Spheres¹⁾

Ву Нігоуаѕи Ізнімото

Department of Mathematics, Faculty of Science, Kanazawa University (Communicated by Kunihiko Kodaira, M. J. A., Nov. 14, 1988)

1. Statement of results. Let W be a handlebody obtained by gluing r, q-handles to a (p+q+1)-disk, and let $\mathcal{H}(p+q+1, r, q)$ be the set of such handlebodies. In this paper, I announce homotopy classification theorems of the boundaries of handlebodies of $\mathcal{H}(p+q+1, r, q)$ in the following two cases:

$$(1) (p,q) = (n-1, n+1) (n > 4),$$

$$(2) (p,q) = (n-2, n+1) (n \ge 6).$$

Such classifications are equivalent to those of simply connected closed m-manifolds M (m=p+q) with $H_i(M)=0$ except for i=0, p, q, m and with the tangent bundle which is trivial on its p-skeleton (this is satisfied if $p\equiv 3, 5, 6, 7 \mod 8$). Henceforth, manifolds are connected, smooth, and oriented, and homotopy equivalences and diffeomorphisms are orientation preserving.

There exists an invariant system $(H;\phi,\alpha)$ which determines W up to diffeomorphism (cf. [4]). Here, $H=H_q(W)$, $\phi\colon H\times H\to Z_2=\pi_q(S^{p+1})$ is a symmetric bilinear form, and $\alpha\colon H\to \pi_{q-1}(SO_{p+1})$ is a quadratic form, which assigns, to each $x\in H\cong \pi_q(W)$, the characteristic element of the normal bundle of the imbedded q-sphere representing x. W is called of type 0 if $\phi=0$, of type II if $\phi(x,x)=0$ for any $x\in H$ and tank tank and of type (0+II) if tank if tank by Proposition 1 of [2, II]. Our main purpose is to determine the necessary and sufficient condition for the boundaries of handle-bodies to be homotopy equivalent using the invariant systems.

The following diagram is commutative up to sign:

Let $\lambda\colon S(\pi_{q-1}(SO_p))\to \pi_{m-1}(S^p)/\operatorname{Im} P$ be the homomorphism defined by $\lambda(S\xi)=\{J\xi\}$, which does not depend on the choice of ξ . Put $\theta=\eta_{n-1}$ if (p,q)=(n-1,n+1) $(n\geq 4)$, and $\theta=\eta_{n-2}^2$ if (p,q)=(n-2,n+1) $(n\geq 6)$. The inclusion map $i\colon S^p\to S^p\cup_\theta D^q$ induces the homomorphisms $i_*\colon \pi_{m-1}(S^p)\to \pi_{m-1}(S^p\cup_\theta D^q)$ and $\bar{i}_*\colon \pi_{m-1}(S^p)/\operatorname{Im} P\to \pi_{m-1}(S^p\cup_\theta D^q)/i_*(\operatorname{Im} P)$. We define $\bar{\lambda}\colon S(\pi_{q-1}(SO_p))\to \pi_{m-1}(S^p\cup_\theta D^q)/i_*(\operatorname{Im} P)$ by $\bar{\lambda}=\bar{i}_*\circ\lambda$.

Let W, W' be the handlebodies of $\mathcal{H}(p+q+1,r,q)$ with the invariant

^{†)} Dedicated to Professor Hirosi Toda on his 60th birthday.

systems $(H; \phi, \alpha)$, $(H'; \phi', \alpha')$ respectively, in one of the cases (1), (2). For $x \in H$, $\phi(x, x) = 0$ implies that the normal p-sphere bundle of the imbedded q-sphere representing x admits a cross-section. So, $\alpha(x)$ belongs to $S(\pi_{q-1}(SO_p)) \subset \pi_{q-1}(SO_{p+1})$.

Theorem 1. Let W, W' be of type 0. Then, $\partial W, \partial W'$ are homotopy equivalent if and only if there exists an isomorphism $h: H \rightarrow H'$ such that $\lambda \circ \alpha = \lambda \circ (\alpha' \circ h)$.

In the above theorem, ∂W , $\partial W'$ correspond to connected sums of r p-sphere bundles over q-spheres admitting cross-sections. So, it is known from Theorem 1 of [2, I] shown as an extension of the James-Whitehead Theorem [3]. We insert it to compare the following theorems with it.

Theorem 2. Let W, W' be of type II. Then, ∂W , $\partial W'$ are homotopy equivalent if and only if there exists an isomorphism $h: H \rightarrow H'$ such that $\phi = \phi' \circ (h \times h)$ and $\bar{\lambda} \circ \alpha = \bar{\lambda} \circ (\alpha' \circ h)$.

Theorem 3. Let W, W' be of type (0+II). Then, $\partial W, \partial W'$ are homotopy equivalent if and only if there exists an isomorphism $h: H \to H'$ such that $\phi = \phi' \circ (h \times h)$, $\bar{\lambda} \circ \alpha = \bar{\lambda} \circ (\alpha' \circ h)$ and furthermore there exists a direct sum decomposition $H = H_0 + H_1$ orthogonal with respect to ϕ such that $\phi \mid H_0 \times H_0 = 0$, $\phi \mid H_1 \times H_1$ is non-singular, and $\lambda \circ \alpha = \lambda \circ (\alpha' \circ h)$ on H_0 .

If W is of type II or of type (0+II), then ∂W can never be represented as a connected sum of p-sphere bundles over q-spheres even up to homotopy equivalence (cf. Lemma 1.1 of [1]). In case that there exists an element $x \in H$ such that $\phi(x,x)\neq 0$, W is called of type I if $rank \phi=r$, of type (0+I) if $0 < rank \phi < r$. Those boundaries of such handlebodies are represented as connected sums of p-sphere bundles over q-spheres, and the homotopy classification is completed in [2, III].

2. Outline of the proofs. The detailed proofs of the above theorems will appear elsewhere. Here, I outline the proof for Theorem 2 since Theorem 3 is obtained similarly.

Every $W \in \mathcal{H}(p+q+1,r,q)$ can be represented as $W=D^{m+1} \cup_{\{f_i\}} \{ \bigcup_{i=1}^r D_i^q \times D_i^{p+1} \}$ (m=p+q) so that $D_i^q \times o$, $i=1,2,\cdots,r$, represent the given basis e_1,e_2,\cdots,e_r of $H \cong H_q(W,D^{m+1})$. Let W be of type II. Then, there exists a basis e_1,e_2,\cdots,e_r (r=2s) symplectic w.r.t. ϕ (cf. Lemma 1.1 of [1]). So, W can be represented by using it. Let $K_\phi = \bigvee_{i=1}^S \{ (S_{2i-1}^p \cup_\theta D_{2i}^q) \bigvee (S_{2i}^p \cup_\theta D_{2i-1}^q) \}$. We denote the orientation generator of $\pi_p(S_i^p)$ by ι_p^q and similarly $(D_j^q) \in \pi_q(K_\phi, \bigvee_{i=1}^r S_i^p)$ by σ_q^q .

Lemma 4. The boundary of W of type II has a cellular decomposition $\partial W \simeq K_{\phi} \cup_{\omega} D^m$, where ω is given by $\omega = \mu + i_*(\iota_p^1 \circ J\beta_1 + \iota_p^2 \circ J\beta_2 + \cdots + \iota_p^r \circ J\beta_r)$. Here, $S(\beta_i) = \alpha(e_i)$, $\beta_i \in \pi_{q-1}(SO_p)$, $i = 1, 2, \dots, r$, and $i_* : \pi_{m-1}(\bigvee_{i=1}^r S_i^p) \to \pi_{m-1}(K_{\phi})$ is induced from the inclusion map. $\mu \in \pi_{m-1}(K_{\phi})$ is of infinite order and corresponds to $[\sigma_q^1, \iota_p^1] + \cdots + [\sigma_q^r, \iota_p^r]$ under $j_* : \pi_{m-1}(K_{\phi}) \to \pi_{m-1}(K_{\phi}, \bigvee_{i=1}^r S_i^p)$. μ does not depend on α and is called "fundamental homotopy class".

Proof (Sketch). We may assume that r=2 w.l.o.g. Since $S_i^p = D_i^p / \partial D_i^p$, each handle $D_i^p \times S_i^p$ of ∂W can be considered as $D_i^q \times D_i^p = D_i^m$ attached to

 $D_i^q \times y_i \ (y_i \in S_i^p)$. So, by connecting $f_1(S_1^{q-1} \times D_1^{p+1})$, $f_2(S_2^{q-1} \times D_2^{p+1})$ with a thin band in S^m , we have $\partial W = \tilde{Y} \cup (D_1^q \cup D_2^q) \cup (D_1^m \mid D_2^m)$, where $\tilde{Y} = S^m - 1$ Int $\{f_1(S_1^{q-1}\times D_1^{p+1}) \mid f_2(S_2^{q-1}\times D_2^{p+1})\}$ and $\mid denotes$ the boundary connected sum. Let ω_i be the attaching map of D_i^m . $D_i^q = D_i^q \times y_i$ can be taken as a half of the cross-section by β_i of the normal p-sphere bundle for e_i . ω_i is determined by the situation of a thin neighbourhood of D_i^q in the handle $D_i^q \times S_i^p \subset \partial W$. The attaching map ω of $D^m = D_1^m \not \mid D_2^m$ is given by $\omega_1 \not \mid \omega_2$. Let Z be $f_1(S_1^{q-1} \times S_1^p) \sharp f_2(S_2^{q-1} \times S_2^p)$ with D_1^q , D_2^q attached. Z is included in $Y \cup S_2^q$ $(D_i^q \cup D_i^q)$ and we can see that Z is homotopy equivalent to $S^{m-1} \vee S_i^p \vee S_i^q$. Then, it is checked that $\omega_1 \sharp \omega_2 : \partial D^m \to \mathbb{Z}$ corresponds to $\iota_{m-1} + \iota_p^1 \circ J\beta_1 + \iota_p^2 \circ J\beta_2$ under the homotopy equivalence. \tilde{Y} is deformed to $S_1^p \vee S_2^p$ and the attaching maps of D_i^q , i=1,2, correspond to the linking elements of the link $f_1(S_i^{q-1}\times o)$ $\bigcup f_2(S_2^{q-1}\times o)\subset S^m$ which can be evaluated by ϕ . So, the retraction extends to a homotopy equivalence $\tilde{Y} \cup D_1^q \cup D_2^q \simeq K_{\phi}$. The subspace Z is also mapped to K_{ϕ} . Thus, we have $\omega = \mu + i_*(\iota_p^1 \circ J\beta_1 + \iota_p^2 \circ J\beta_2)$, where μ is of infinite order since we know that $j_*(\mu) = [\sigma_q^1, \iota_p^1] + [\sigma_q^2, \iota_p^2]$ after a calculation.

Sufficiency proof for Theorem 2. Take the symplectic basis $e'_i = h(e_i)$, $i = 1, 2, \dots, r$, for H'. We have $\partial W \simeq K_{\sigma} \cup_{\omega} D^m$, $\partial W' \simeq K_{\sigma} \cup_{\omega'} D^m$. Let $\bar{\iota}^i_p : S^p \cup_{\theta} D^q \to K_{\phi}$ be a canonical extension of $\iota^i_p : S^p \to S^p_i$. Then, $\omega = \mu + (\bar{\iota}^1_p \circ i_* J \beta_1) + \dots + \bar{\iota}^r_p \circ i_* J \beta_r$) for $i_* : \pi_{m-1}(S^p) \to \pi_{m-1}(S^p \cup_{\theta} D^q)$, and similarly for ω' . Since $\bar{\lambda}(S\beta_i) = \bar{\lambda}\alpha(e_i) = \bar{\lambda}\alpha'(e_i') = \bar{\lambda}(S\beta_i')$ from the condition, we have $J\beta_i - J(\beta_i' - \partial \gamma_i) = \delta_i$ for some $\gamma_i \in \pi_q(S^p)$, $\delta_i \in \operatorname{Ker} i_*$. Put $\beta_i'' = \beta_i' - \partial \gamma_i$, $i = 1, 2, \dots, r$. Since $S\beta_i'' = S\beta_i' = \alpha'(e_i')$, we can take another decomposition $\partial W' \simeq K_{\phi} \cup_{\omega''} D^m$ with $\omega'' = \mu + (\bar{\iota}^1_p \circ i_* J \beta_1'' + \dots + \bar{\iota}^r_p \circ i_* J \beta_r'')$. So, $\omega'' \simeq \omega$ and therefore $\partial W \simeq \partial W'$.

Lemma 5. Let W,W' be of type II and let $f:\partial W\to\partial W'$ be a homotopy equivalence. Then, there exist cellular decompositions $\partial W\simeq K_{\phi}\cup_{\omega}D^m$, $\partial W'\simeq K_{\phi'}\cup_{\omega'}D'^m$ such that $f_*\mu-\mu'=i'_*([\theta'_1,\iota'^1_p]+\cdots+[\theta'_r,\iota'^r_p])$ for certain elements $\theta'_i\in\pi_q(\bigvee_{j=1}^rS'^p_j)$, $i=1,2,\cdots,r$, where μ,μ' are fundamental homotopy classes.

Proof (Sketch). $K_{\phi'}$ is a copy of K_{ϕ} . By Lemma 2.1 of [2, II], we can take such decomposition that $f_*(\iota_p^i) = \iota_p'^i$, $i = 1, 2, \cdots, r$, (hence $f \mid \bigvee_{i=1}^r S_i^p = 1$) and $\bar{f}_*(\sigma_q^i) = \sigma_q'^j$, $j = 1, 2, \cdots, r$, where $\bar{f}: (K_{\phi}, \bigvee_{i=1}^r S_i^p) \to (K_{\phi'}, \bigvee_{i=1}^r S_i'^p)$. Let $K = K_{\phi} \cup K_{\phi'}$ with S_i^p , $S_i'^p$ identified for $i = 1, 2, \cdots, r$. Let $m : K_{\phi} \to K$, $m' : K_{\phi'} \to K$ be inclusion maps, and put $\bar{\mu} = m_* \mu$, $\bar{\mu}' = m'_* \mu'$. Let $A = \bigvee_{i=1}^r (S_i^q \bigvee S_i^p) \cup_{x} D^m$, where $\chi = [\iota_q^i, \iota_p^1] + \cdots + [\iota_q^r, \iota_p^r]$. Then, by a certain geometric construction, there exists a map $g : A \to K \cup_{p} D^m \cup_{p'} D'^m$ such that $\bar{\mu} - \bar{\mu}' = g_*([\iota_q^i, \iota_p^1] + \cdots + [\iota_q^r, \iota_p^r])$. Let $r' : K \to K_{\phi'}$ be the retraction defined by $r' \mid K_{\phi} = f$ and $r' \mid K_{\phi'} = 1$. Then, $f_*(\mu) - \mu' = r'_*(\bar{\mu} - \bar{\mu}') = (r' \circ g)_*([\iota_q^i, \iota_p^1] + \cdots + [\iota_q^r, \iota_p^r])$. From the construction of g, we know that $(r' \circ g)_* \iota_p^i = i'_* \iota_p'^i$, $l_*(g_* \iota_q^i) = \overline{m}_* \sigma_q^i - \overline{m}'_* \sigma_q'^i$, where $l : K \to (K, \bigvee_{i=1}^r S_i^p)$ is the inclusion map and \overline{m} , \overline{m}' are the relativizations of m, m'. Hence, for $j'_* : \pi_q(K_{\phi'}) \to \pi_q(K_{\phi'}, \bigvee_{i=1}^r S_i'^p)$, we have $j'_*(r' \circ g)_* \iota_q^i = \overline{r}'_* \iota_q(g_* \iota_q^i) = \overline{r}'_* (\overline{m}_* \sigma_q^i - \overline{m}'_* \sigma_q'^i) = \overline{f}_* \sigma_q^i - \sigma_q'^i = 0$. Thus, there exists $\theta'_* \in \pi_q(\bigvee_{j=1}^r S_j'^p)$ such that $i'_*(\theta'_*) = (r' \circ g)_* \iota_q^i$. Therefore, $f_*(\mu) - \mu' = i'_*([\theta'_1, \iota_p'^1] + \cdots + [\theta'_r, \iota_p'^r])$.

Necessity proof for Theorem 2. Since $f_*(\omega) = \omega'$, we have $f_*(\mu) - \mu' + i'_*\{\iota'^1_p \circ (J\beta_1 - J\beta_1') + \dots + \iota'^r_p \circ (J\beta_r - J\beta_r')\} = 0$. In Lemma 5, $\theta'_i = \sum_{j=1}^r \iota'^j_p \circ \theta_{ij} + \sum_{j < k} [\iota'^1_p, \iota'^k_p] \circ \theta_{ijk}$ for certain $\theta_{ij} \in \pi_q(S^p)$, $\theta_{ijk} \in \pi_q(S^{2p-1})$, $j, k = 1, 2, \dots, r$. So, we have $\sum_i i'_* a_i + \sum_{i < j} i'_* b_{ij} + \sum_{i \ge j < k} i'_* c_{ijk} = 0$, where $a_i = \iota'^i_p \circ (J\beta_i - J\beta_i' + [\theta_{ii}, \iota_p])$ and those consisting of the basic products of weight 2 (weight 3) are included in the second (third) term. Hence, by the argument in Assertion 3 of [2, II, p. 321], we have $\sum_{i=1}^r i'_* a_i = 0$, and therefore, $i'_* a_i = 0$, $i = 1, 2, \dots, r$. Define $\bar{\iota}_p^{ii}$ similarly to $\bar{\iota}_p^i$. Since $i' \circ \iota'^i_p = \bar{\iota}_p^{ii} \circ i$ and $(\bar{\iota}_p^{ii})_*$ is injective, we have $i_*(J\beta_i - J\beta_i' + [\theta_{ii}, \iota_p]) = 0$, and so $i_*(J\beta_i') - i_*(J\beta_i) = i_*(P\theta_{ii})$. This implies $\bar{\lambda}\alpha(e_i) = \bar{\lambda}\alpha'(e_i')$, $i = 1, 2, \dots, r$. Then, an isomorphism $h: H \to H'$ defined by $h(e_i) = e_i'$, $i = 1, 2, \dots, r$, will satisfy the conditions.

References

- [1] Ishimoto, H.: On the classification of (n-2)-connected 2n-manifolds with torsion free homology groups. Publ. RIMS. Kyoto Univ., 9, 211-260 (1973).
- [2] —: Homotopy classification of connected sums of sphere bundles over spheres.
 I. Nagoya Math. J., 83, 15-36 (1981); ditto. II. Publ. RIMS. Kyoto Univ., 18, 307-324 (1982); ditto. III. ibid., 19, 773-811 (1983).
- [3] James, I. M. and J. H. C. Whitehead: The homotopy theory of sphere bundles over spheres. I. Proc. London Math. Soc., 4(3), 196-218 (1954).
- [4] Wall, C. T. C.: Classification problems in differential topology-I. Classification of handlebodies. Topology, 2, 253-261 (1963).