11. Existence of the Perturbed Solutions of Semilinear Elliptic Equation in the Singularly Perturbed Domains

By Shuichi Jimbo
Department of Mathematics, Faculty of Science,
University of Tokyo
(Communicated by Kôsaku Yosida, m. J. A., Feb. 12, 1988)

In the previous paper [4], we have studied the asymptotic behaviors of the following semilinear elliptic equation defined on the singularly perturbed domain $\Omega(\zeta)$ with the Neumann boundary condition where $\Omega(\zeta)$ $=D_{1} \cup D_{2} \cup Q(\zeta)$ and the moving portion $Q(\zeta)$ approaches a line segment L as $\zeta \rightarrow 0$.

$$
\left(\begin{array}{ll}
\Delta v+f(v)=0 & \text { in } \Omega(\zeta) \tag{1.1}\\
\frac{\partial v}{\partial \nu}=0 & \text { on } \partial \Omega(\zeta),
\end{array}\right.
$$

where $\Delta=\sum_{i=1}^{n} \partial^{2} / \partial x_{i}^{2}$ is the Laplacian and ν is the unit normal vector on $\partial \Omega(\zeta)$ and f is a real valued smooth function on \boldsymbol{R}. We have proved in [4] that any solution v_{ξ} for small $\zeta>0$, is approximated by some triple of solutions (w_{1}, w_{2}, V) of the following system of equations

$$
\begin{align*}
& \left(\begin{array}{lc}
\Delta w_{i}+f\left(w_{i}\right)=0 & \text { in } D_{i}, \\
\partial w_{i} / \partial \nu=0 & \text { on } \partial D_{i}, \\
(i=1,2) \\
\left(d^{2} V / d z^{2}+f(V)=0\right. & z \in L, \\
\left.V\right|_{\partial D_{i} \cap \partial L}=\left.w_{i}\right|_{\partial D_{i} \cap \partial L} & (i=1,2),
\end{array}\right. \tag{1.2}
\end{align*}
$$

where z is an adequate variable along L. In view of the above characterization of the solutions (1.1) the following inverse problem naturally arise, i.e. for any given triple of solutions $\left\{w_{1}, w_{2}, V\right\}$ of the system of the equations (1.2) and (1.3), is there a family of functions $\left\{v_{\zeta}\right\}_{0<\zeta<\zeta_{*}}$ such that each $v_{\xi} \in$ $C^{\infty}(\Omega(\zeta))$ is a solution of (1.1) and satisfies the following asymptotic conditions,

$$
v_{\zeta} \sim w_{i} \text { in } D_{i}(i=1,2), \quad v_{\zeta} \sim V \text { in } Q(\zeta)
$$

for small $\zeta>0$ in some sense.
In this paper we report an affirmative answer to the above problem under some non-degeneracy condition of $\left\{w_{1}, w_{2}, V\right\}$.

First we establish the situation. We set the domain $\Omega(\zeta)$ in the following form :

$$
\Omega(\zeta)=D_{1} \cup D_{2} \cup Q(\zeta)
$$

where $D_{i}(i=1,2)$ and $Q(\zeta)$ are defined in the following conditions (A.1) and (A.2) where $x^{\prime}=\left(x_{2}, x_{3}, \cdots, x_{n}\right) \in \boldsymbol{R}^{n-1}$.
(A.1) $\quad D_{1}$ and D_{2} are bounded domains in R^{n} where $\bar{D}_{1} \cap \bar{D}_{2}=\varnothing$ and each D_{i} has a smooth boundary ∂D_{i} and the following conditions hold for some positive constant $\zeta_{*}>0$.

$$
\begin{gather*}
\bar{D}_{1} \cap\left\{x=\left(x_{1}, x^{\prime}\right) \in \boldsymbol{R}^{n}\left|x_{1} \leqq 1,\left|x^{\prime}\right|<3 \zeta_{*}\right\}\right. \\
=\left\{\left(1, x^{\prime}\right) \in \boldsymbol{R}^{n} \| x^{\prime} \mid<3 \zeta_{*}\right\} \\
\bar{D}_{2} \cap\left\{x=\left(x_{1}, x^{\prime}\right) \in \boldsymbol{R}^{n}\left|x_{1} \geqq-1,\left|x^{\prime}\right|<3 \zeta_{*}\right\}\right. \\
=\left\{\left(-1, x^{\prime}\right) \in \boldsymbol{R}^{n}| | x^{\prime} \mid<3 \zeta_{*}\right\} \\
Q(\zeta)=R_{1}(\zeta) \cup R_{2}(\zeta) \cup \Gamma(\zeta) \tag{A.2}\\
R_{1}(\zeta)=\left\{\left(x_{1}, x^{\prime}\right) \in \boldsymbol{R}^{n}\left|1-2 \zeta<x_{1} \leqq 1,\left|x^{\prime}\right|<\zeta \rho\left(\left(x_{1}-1\right) / \zeta\right)\right\}\right. \\
R_{2}(\zeta)=\left\{\left(x_{1}, x^{\prime}\right) \in \boldsymbol{R}^{n}\left|-1 \leqq x_{1}<-1+2 \zeta,\left|x^{\prime}\right|<\zeta \rho\left(\left(-1-x_{1}\right) / \zeta\right)\right\}\right. \\
\Gamma(\zeta)=\left\{\left(x_{1}, x^{\prime}\right) \in \boldsymbol{R}^{n}\left|-1+2 \zeta \leqq x_{1} \leqq 1-2 \zeta,\left|x^{\prime}\right|<\zeta\right\}\right.
\end{gather*}
$$

where $\rho \in C^{0}((-2,0]) \cap C^{\infty}((-2,0))$ is a positive function such that $\rho(0)=2$, $\rho(s)=1$ for $s \in(-2,-1), d \rho / d s>0$ for $s \in(-1,0)$ and the inverse function $\rho^{-1}:(1,2) \rightarrow(-1,0)$ satisfies $\lim _{\xi, 2-0}\left(d^{k} \rho^{-1} / d \xi^{k}\right)=0$ holds for any positive integer $k \geqq 1$. We put

$$
\begin{aligned}
p_{1} & =(1,0, \cdots, 0), \quad p_{2}=(-1,0, \cdots, 0), \\
L & =\left\{(z, 0, \cdots, 0) \in R^{n} \mid-1<z<1\right\} .
\end{aligned}
$$

We impose the following conditions.

$$
\begin{equation*}
f \in C^{\infty}(\boldsymbol{R}), \quad \limsup _{\xi \rightarrow+\infty} f(\xi)<0, \quad \liminf _{\xi \rightarrow-\infty} f(\xi)>0 \tag{A.3}
\end{equation*}
$$

(A.4) There exists a system of solutions $\left\{w_{1}, w_{2}, V\right\}$ in

$$
C^{\infty}\left(\bar{D}_{1}\right) \times C^{\infty}\left(\bar{D}_{2}\right) \times C^{\infty}([-1,1]) \text { of (1.2) and (1.3) }
$$

Definition. For the above solutions $\left\{w_{1}, w_{2}, V\right\}$ in (A.4), we denote by $\left\{w_{k}\right\}_{k=1}^{\infty}$ and $\left\{\lambda_{k}\right\}_{k=1}^{\infty}$, respectively, the system of the eigenvalues arranged in increasing order (counting multiplicity) of the following eigenvalue problems (1.4) and (1.5),

$$
\left(\begin{array}{ll}
\Delta \phi+f^{\prime}(w) \phi+\omega \phi=0 & \text { in } D_{1} \cup D_{2} \tag{1.4}\\
\partial \phi / \partial \nu=0 & \text { on } \partial D_{1} \cup \partial D_{2}
\end{array}\right.
$$

where

$$
\begin{gather*}
w(x)=\left(\begin{array}{ll}
w_{1}(x) & \text { for } x \in D_{1}, \\
w_{2}(x) & \text { for } x \in D_{2}
\end{array}\right. \\
\left(\begin{array}{ll}
\frac{d^{2} S}{d z^{2}}+f^{\prime}(V) S+\lambda S=0 & -1<z<1, \\
S(1)=S(-1)=0
\end{array}\right. \tag{1.5}
\end{gather*}
$$

We assume the following non-degeneracy condition of $\left\{w_{1}, w_{2}, V\right\}$.

$$
\begin{equation*}
\left\{\omega_{k}\right\}_{k=1}^{\infty} \cap\left\{\lambda_{k}\right\}_{k=1}^{\infty}=\varnothing, \quad\left\{\omega_{k}\right\}_{k=1}^{\infty} \cup\left\{\lambda_{k}\right\}_{k=1}^{\infty} \nexists 0 \tag{A.5}
\end{equation*}
$$

Theorem. Assume $n \geqq 3$ and the assumptions (A.1)-(A.5). Then, for any $\zeta \in\left(0, \zeta_{*}\right)$, there exists a solution v_{ζ} of (1.1) such that

$$
\begin{align*}
& \lim _{\zeta \rightarrow 0} \sup _{x \in D_{1} \cup D_{2}}\left|v_{\zeta}(x)-w(x)\right|=0, \tag{1.6}\\
& \lim _{\zeta \rightarrow 0} \sup _{x \in Q(\zeta)}\left|v_{\zeta}\left(x_{1}, x^{\prime}\right)-V\left(x_{1}\right)\right|=0 . \tag{1.7}
\end{align*}
$$

Sketch of proof. In the proof of Theorem, the results and methods obtained in [4] and [5] are essentially applied, especially in our delicate reduction of (1.1) to the problem of finite dimension. By these methods, we can construct an approximate solution $A_{\zeta} \in C^{\infty}(\overline{\Omega(\zeta))}$ such that

$$
\left(\begin{array}{l}
\lim _{\zeta \rightarrow 0} \sup _{x \in D_{1} \cup D_{2}}\left|A_{\zeta}(x)-w(x)\right|=0 \tag{2.1}\\
\lim _{\zeta \rightarrow 0} \sup _{x \in Q(\zeta)}\left|A_{\zeta}\left(x_{1}, x^{\prime}\right)-V\left(x_{1}\right)\right|=0
\end{array}\right.
$$

$$
\begin{align*}
& \left(\lim _{\zeta \rightarrow 0} \sup _{x \in \Omega(\zeta)}\left|\Delta A_{\zeta}(x)+f\left(A_{\zeta}(x)\right)\right|=0\right. \tag{2.2}\\
& \partial A_{\zeta}(x) / \partial \nu=0 \text { on } \partial \Omega(\zeta) .
\end{align*}
$$

We project (1.1) to the subspace of $H^{1}(\Omega(\zeta))$ by using the eigenfunctions of the linearized problem at A_{ζ}.

Let $\left\{\mu_{k}(\zeta)\right\}_{k=1}^{\infty}$ and $\left\{\Phi_{k, r}\right\}_{k=1}^{\infty}$ be, respectively, the eigenvalues (counting multiplicity) arranged in increasing order and the complete system of orthonormalized eigenfunctions in $L^{2}(\Omega(\zeta))$. By [5], we have the following decompositions

$$
\begin{align*}
& \left\{\mu_{k}(\zeta)\right\}_{k=1}^{\infty}=\left\{\omega_{k}(\zeta)\right\}_{k=1}^{\infty} \cup\left\{\lambda_{k}(\zeta)\right\}_{k=1}^{\infty} \tag{2.3}\\
& \left\{\Phi_{k, \zeta}\right\}_{k=1}^{\infty}=\left\{\phi_{k, \xi}\right\}_{k=1}^{\infty} \cup\left\{\psi_{k, \zeta}\right\}_{k=1}^{\infty} \tag{2.4}
\end{align*}
$$

where

$$
\lim _{\zeta \rightarrow 0} \omega_{k}(\zeta)=\omega_{k}, \quad \lim _{\zeta \rightarrow 0} \lambda_{k}(\zeta)=\lambda_{k} \quad(k \geqq 1)
$$

and

$$
\begin{align*}
\left(\varlimsup_{\zeta \rightarrow 0}\left\|\phi_{k, \zeta}\right\|_{L^{\infty}(\Omega(\zeta))}<+\infty\right. & (k \geqq 1) \tag{2.5}\\
\lim _{\zeta \rightarrow 0}\left\|\psi_{k, \zeta}\right\|_{L^{\infty}(\Omega(\zeta))}=+\infty & \tag{2.6}\\
\left\|\psi_{k^{\prime}, \zeta}\right\|_{L^{\infty}(\Omega(\zeta))} \sim O\left(\zeta^{-(n-1) / 2}\right) & (k \geqq 1), \tag{2.7}\\
\left\|\psi_{k, \zeta}\right\|_{L^{1}(\Omega(5))} \sim O\left(\zeta^{(n-1) / 2}\right) & (k \geqq 1) .
\end{align*}
$$

Let

$$
X(\zeta)=H^{1}(\Omega(\zeta)), \quad X_{1}(\zeta)=\text { L.h. }\left[\left\{\phi_{k, r}\right\}_{k=1}^{q} \cup\left\{\psi_{k, r}\right\}_{k=1}^{q}\right]
$$

and

$$
X_{2}(\zeta)=\mathrm{L} \cdot \mathrm{~h} \cdot\left[\left\{\phi_{k,}\right\}_{k=q+1}^{\infty} \cup\left\{\psi_{k, \zeta}\right\}_{k=q+1}^{\infty}\right]^{\ln X(\zeta)}
$$

where q is a adequately fixed large natural number determined by f. We seek the solution in the form

$$
v(x)=A_{\zeta}(x)+\Phi_{\zeta}^{(1)}+\Phi_{\zeta}^{(2)} \quad \text { where } \quad \Phi_{\zeta}^{(i)} \in X_{i}(\zeta) \quad(i=1,2) .
$$

Project (1.1) to the subspaces $X_{1}(\zeta)$ and $X_{2}(\zeta)$ by the following operator P_{ζ} on $L^{2}(\Omega(\zeta))$,

$$
P_{\zeta} \Phi(x)=\sum_{k=1}^{q}\left(\left(\Phi \cdot \phi_{k, \zeta}\right)_{L^{2}(\Omega(\zeta))} \phi_{k, \zeta}(x)+\left(\Phi \cdot \psi_{k, \zeta}\right)_{L^{2}(\Omega(\xi))} \psi_{k, \zeta}(x)\right) .
$$

The difficulty of the reduction is due to the existence of the singularly behaving eigenfunctions $\left\{\psi_{k, 5}\right\}_{k=1}^{\infty}$ (cf. (2.5)) which are associated with the partial collapse of $\Omega(\zeta)$. By the elaborate estimate (2.6) and (2.7), the operator P_{ζ} maps $L^{\infty}(\Omega(\zeta))$ into $L^{\infty}(\Omega(\zeta))$ and its operator norm is bounded in $\zeta>0$. Thus we can carry a good formulation in $L^{\circ}(\Omega(\zeta))$, i.e. we can obtain the finite dimensional equation with respect to the variable $\tau=$ ($\tau_{1}, \tau_{2}, \cdots, \tau_{2 q}$) by putting

$$
\Phi_{\tau, \zeta}^{(1)}(x)=\sum_{k=1}^{q}\left(\tau_{k} \phi_{k, \zeta}(x)+\tau_{q+k} \bar{\psi}_{k, \zeta}(x)\right)
$$

where $\bar{\psi}_{k, \zeta}(x)=\psi_{k, \zeta}(x) /\left\|\psi_{k, \zeta}\right\|_{L^{2}(\Omega(\zeta))}$.

References

[1] J. K. Hale and J. Vegas: A nonlinear parabolic equation with varying domain. Arch. Rat. Mech. Anal., 86, 99-123 (1984).
[2] S. Jimbo: Characterization of the eigenfunctions in the singularly perturbed domain. Proc. Japan Acad., 63A, 285-288 (1987).
[3] -: Characterization of the eigenfunctions in the singularly perturbed domain. II. ibid., 64A, 14-16 (1988).
[4] -: Singular perturbation of domains and semilinear elliptic equation. II (to appear in J. Diff. Eq.).
[5] --: The singularly perturbed domain and the characterization for the eigenfunctions with Neumann boundary condition (preprint).
[6] H. Matano: Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. RIMS, Kyoto Univ., 15, 401-454 (1979).
[7] J. M. Vegas: Bifurcation caused by perturbing the domain in an elliptic equation. J. Diff. Eq., 48, 189-226 (1983).

