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90. Solvability in Distributions for a Class of Singular
Differential Operators. II

By Hidetoshi TAHARA
Department of Mathematics, Sophia University

(Communicated by Kosaku Yo0sIDA, M. J. A., Nov. 14, 1988)

In [3], the author has established the local solvability in the space of
distributions 9’ for some non-Fuchsian operators of hyperbolic type. In
this paper, he will establish the local solvability in 9’ for a class of (non-
Fuchsian) singular elliptic operators including

L=(t3,)*+4,+a(t, 2)(t3,) + (b(t, ), 3,y +c(t, x).
As to the case of Fuchsian operators, see [2].
§1. Theorem. Let us consider

P= Z a’j,a(t, x)(tat)jag:’

+lalEm
where (¢, )=, 2, -+, %) e;?t>l<R;‘, 9,=ad/ot, 9,=(9/oxy, ---,0/0%,), ME
1,28, -}, a=(a, - - -, ) €{0,1,2, - - -}, |a|=a,+ - - - +, and 93=(/0x,)™
-+ +(8/8z,)*». On the coefficients, we assume that a,.(t,2) (j+|a|<m) are
C~ functions defined in an open neighborhood U of (0,0) in R, X R*. Asto
the ellipticity, we assume the following condition:

2. 0,.0,0)2%6*0,  when (0,0)2(c, §) € R. X R?.

For U we write U(+)=UN{t>0} and U(—)=UN{t<0}. Then we have

Theorem. Let ke{0,1,2,---}. Then there is an open neighborhood
U, of (0,0) in R, X R" which satisfies the following: for any f(t, x)(=f) e
H-"-%U,) there exists a u(t, x)(=u) e H-""*-(U)N H*(U(+)) such that
Pu=f holds on U,.

Here, H-?(U) and H;;2(U) denote the usual Sobolev spaces on U (see [1]).

Corollary. For any fe 9'(U) there exists a w € 9'(U) such that Pu= f
holds in a neighborhood of (0,0) in R, X R.

§2. A priori estimates. Before giving a proof of Theorem, let us
present a priori estimates for P. Put

Po= 2. a,.t 2)(t3,+s)0;.

J+lalEm

Lemma. LetPbeasin§l. Then there are 6,>0 (k=0,1,2, ---) and
an open neighborhood V of (0,0) in R, X R” such that the estimate
@D 3 IOAYDAPp 2o 3 (E0,41/2 50l

+ 1]
holds for aﬁﬂy'io e Ce(V(L)), where || x| means the norm in LA(V(+)).
Proof. Note that by the change of variables V(+)3 (f, x)—(zr, x)=
(—logt, x) e R.X R" the operator P is transformed into an elliptic operator
R near (o0, 0). Therefore by the standard argument for elliptic operators

and by using Poincaré’s inequality with respect to the z-variables we can
obtain
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(2-2) ”R‘I’”:'(’r,x);a() j+§§m”aza‘;\,’”%nz)

for any € C¢((T, o) Xw), if T is sufficiently large and o is sufficiently
small. Since (2.2) is equivalent to

2.3 Ht"”P¢H25<>j 2 lle (0. 54|

+lal=m
under the relation ¢(¢, x) =+(z, x), by putting ¢(t, )=t""¢(t, ) in (2.3) we
have

IIP;/ngIIZZﬁo“Z [I(t3.+1/2)'350|f

lajsm
for any ¢ € C5((0, &) X ) (Where e=e~"). Thus by putting V=(—¢, ) X0 we
obtain (2.1),, The general case (2.1), for k=1 can be proved inductively
on k by using only the fact that (2.1), holds for any ¢ € C(V(+)).

By applying Lemma to (P_,_.,,»* (the formal adjoint operator of
P_, ...z We can obtain

Corollary to Lemma. LetP beasin§l,andletke{0,1,2, ---}. Then
there are ¢,>0 and an open neighborhood V, of (0,0) in R, X R? such that
the estimate

(P _m-w*li=cillt™ ol
holds for any ¢ € C7(V(£)), where || x|, means the norm in the Sobolev space
H(V,(%)).

§3. Proof of Theorem. Theorem is obtained by the following three
facts (A-1)-(A-3).

(A-1) Let ke{0,1,2,---}. Then there is an open neighborhood V,
of (0,0) in R, X R* which satisfies the following : for any open subset W of
V. and any fe H ™ *W(+)), there exists a ue H *(W(x)) such that
P(t—™*y)= f holds on W(z%).

(A-2) Let k,pe{0,1,2, ---}and u e H*(0, T) X 2) (where 2 is an open
subset of RY). Then we can find a we H**(—T, T)X ) such that w=
tPuon (0, T)x2 and w=0 on (—T, 0) X Q2.

(A-3) Let Ne{0,1,2,---}. Then there is an open neighborhood 2,
of =0 in R® which satisfies the following: for any open subsets w cw, of
2y and any h e H¥((—T, T) X w,) satisfying supp () C{t=0}, there exists a
ve H-V-"*"(—T, T)X ) satisfying supp (v) C{t=0} such that Pv=~h holds
on (-7, T)Xw.

In fact, if we know these facts, we can give a proof of Theorem as
follows. Letke{0,1,2, ...}, and let wcw, be sufficiently small open neigh-
borhoods of x=0 in R (depending on k). Put W=(—T,T)Xw and W,=
(_‘ T’ T) >< 0)1.

Let fe H ™ “W). Choose f,e H-™ %W, so that f;=f on W. Then
by (A-1) we can find u, e H*(W,(+)) and u_.eH *(W,(—)) such that
P(t-"*y,)=f, on W,(+) and Pt " "*u_)=f, on W,(—). Moreover by (A-2)
we can find a we H-™*(W,) such that w=¢t""*u, on W,(-+) and w=
t-m*y_ on W,(—). Put h=f,—Pw. Then we have he H* (W, and
supp (h) C{t=0}. Therefore by (A-3) we have a v e H-""*~'(W) such that
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Pv=h on W. Hence by putting u=v+w we obtain a solution ue
H-™-%-4(W) of Pu=jfon W. Since P is elliptic on W(+-) and since Pu(=f)
e H-m-¥(W(=+)), the condition u ¢ H*(W(+)) is clear.

Thus, to have Theorem it is sufficient to prove (A-1)-(A-3).

Proof of (A-1). Let feH ™ “W(+)). Put Z={P_,.)*p; ¢eCy
(W(+£))} and define a linear functional T on Z by T((P_,_»*p)={p, t"**f>.
Then by Corollary to Lemma in § 2 we can see that T is well-defined and it
is continuous on Z with respect to the topology induced from H:(W(+)).
Therefore we can find a 4 € H-*(W(x)) such that T'(2) =<z, u) for any z ¢ Z,
that is, {(P_n_)*p, up=<p, t"**f> for any ¢ e C;(W(=x)). Hence, we have
P_,_u=t""*f on W(=) and therefore P(t ™ *u)=j on W(=+).

Proof of (A-2). When k=0, (A-2) is verified as follows: for u e L*
(0, TYx 2), by defining

w, py=(tu, (p— 5 L @0, )
s "\ A il PR L3((0, Ty X 2)

(for e C5((—T,T) X)) we can obtain a we H-?(—T,T)x2) such that
w=t"y on (0, )X R and w=0on (—T,0)x Q.
When k=1, (A-2) is verified as follows. Let u e H*((0, T)x2). Then
u is expressed in the form u=73;, . <, 0/0:(f;,o) for some f, . e L*(0, T) X Q).
Therefore we have
tru= 3 ao( 3 7 0uw) om0, T)XQ

i+ |a| Sk
for some g, ., € L*((0, T) X 2). Since (A-2) with k=0 is already known, we
can find w,,, e H* Y((—-T,T)x2) such that w,,,=t*'g,,, on (0,T)xXQ2
and w,,,=0on (—T,0)x 2. Hence, by putting
 fk=]al-i
w= >, 3282( 2. wi,a,l)

i+lalsk 1=0

we obtain a desired extension we H?-*((—T, T) x 2) in (A-2).
Proof of (A-3). Letw,and h be as in (A-3). Then, by [1, Proposition
4.8 in Chapter 2] we can see that & is expressed in the form 2=>3> 77 6“({)®
(@) for some g, € H’* w,) ((=0,1, --.,N—1). Therefore, by the condi-
tion wcw, we have p(=wl,) e H ¥ (o) ((=0,1, ---,N—-1). Put
C(P; Z, ax)= ; Z aj,a(o’ x)Pja;

+la|E=m
and note that C(p; x, d,) is an elliptic operator near x=0. Put v=2Y7'6®
@)@ (x). Then, we can see that Pv=h is equivalent to the following
recursive system of elliptic equations:
C(—N; @, 0 n-1= y-1»
G.1) C(—N+1 ;.x,.ax.)'\l"N—%:zuN—z +Ly 2 n-1(®5 0w -1

......

......

C(—1; @, 0, )90= pto+ 207" Lo, (@, 8)s,
where L, (x,0,) (0<i<N -2 and i+1<I<N-—1) are differential operators
of order m determined by P. Therefore, if o is sufficiently small (depend-
ing on N), we can solve (3.1) successively and obtain (x) e HV***"(w)
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(¢=0,1,.---,N—1). Thus, we obtain a solution v=> Y7 ()R (x)
H-V-4"((—-T,TYXw) of Pv=h on (—T,T) X w.
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