88. The Sylvester's Law of Inertia for Jordan Algebras

By Soji Kaneyuki
Department of Mathematics, Sophia University
(Communicated by Kunihiko Kodaira, m. J. A., Oct. 12, 1988)

The purpose of this note is to present some results on the orbit structure of a compact (=formally real) simple Jordan algebras under the action of the identity component of its structure group. In view of the classification of compact simple Jordan algebras, Theorem 1 is viewed as a natural generalization of the Sylvester's law of inertia for real symmetric or complex Hermitian matrices. We shall use terminologies and well-known facts in the theory of Jordan algebras without giving explanations (see, for instance, Jacobson [2] and Braun-Koecher [1]).

1. Let \mathfrak{A} be a compact simple Jordan algebra of degree r, and let $G(\mathfrak{H})$ be the structure group of \mathfrak{A}. Let $G^{0}(\mathfrak{H})$ denote the identity component of $G(\mathfrak{U})$. Let $a \in \mathfrak{U}$ and let

$$
\begin{equation*}
m_{a}(\lambda)=\lambda^{r}-\sigma_{1}(a) \lambda^{r-1}+\cdots+(-1)^{r} \sigma_{r}(a) \tag{1}
\end{equation*}
$$

be the generic minimum polynomial of a (for details, see [2]). Note that each $\sigma_{i}(a)$ is a homogeneous polynomial of degree i in the components of a. If we denote the minimum polynomial of the element a by $\mu_{a}(\lambda)$, then each irreducible factor of $m_{a}(\lambda)$ is a factor of $\mu_{a}(\lambda)$ ([2]). The polynomial equation $\mu_{a}(\lambda)=0$ has only real roots, since \mathfrak{A} is compact ([1]). Therefore the equation $m_{a}(\lambda)=0$ also has only real roots. By the signature of an element $a \in \mathfrak{Z}$ (denoted by sgn (α)), we mean the pair of the integers (p, q) such that p and q are numbers of positive and negative roots of the equation $m_{a}(\lambda)$ $=0$, respectively. Here the number of a root should be counted by including its multiplicity. Let $\mathfrak{U}_{p, q}$ denote the set of elements $a \in \mathfrak{A}$ with $\operatorname{sgn}(a)$ $=(p, q)$. Then we have

$$
\begin{equation*}
\mathfrak{Y}=\prod_{p+q \leqslant r} \mathfrak{A}_{p, q} . \tag{2}
\end{equation*}
$$

Now let e be the unit element of \mathfrak{A}. Since \mathfrak{A} is of degree r, one can choose a system of primitive orthogonal idempotents $\left\{e_{1}, \cdots, e_{r}\right\}$ of \mathfrak{N} such that $\sum_{i=1}^{r} e_{i}=e$. Such systems are conjugate to each other under the automorphism group Aut \mathfrak{A} of \mathfrak{A}. We choose and fix such a system $\left\{e_{1}, \cdots, e_{r}\right\}$ and put

$$
\begin{equation*}
o_{p, q}=\sum_{i=1}^{p} e_{i}-\sum_{j=p+1}^{p+q} e_{j}, \quad p, q \geqslant 0, \quad p+q \leqslant r ; \tag{3}
\end{equation*}
$$

here we are adopting the convention that the first and the second terms of the right hand side of (3) should be zero, provided that $p=0$ and $q=0$, respectively.

Theorem 1. Let \mathfrak{A} be a compact simple Jordan algebra of degree r. Then the decomposition (2) is the $G^{0}(\mathfrak{H})$-orbit decomposition of \mathfrak{A}. More
precisely, each subset $\mathfrak{Y}_{p, q}$ is the $G^{0}(\mathfrak{H})$-orbit through the point $o_{p, q}(p, q \geqslant 0$, $p+q \leqslant r$).

Sketch of the proof. By the rank of an element $a \in \mathfrak{A}$ (denoted by rank (a)), we mean the number of non-zero roots of the equation $m_{a}(\lambda)=0 . \quad \mathfrak{U}_{k}$ denotes the set of elements $a \in \mathfrak{A}$ with $\operatorname{rank}(a)=k$. Note that $0 \leqslant k \leqslant r$. Starting from the Jordan algebra \mathfrak{Q}, one can construct a simple graded Lie algebra $\mathfrak{g}=\mathfrak{g}_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1}$, called a symmetric Lie algebra, with g_{-1} as the underlying vector space of \mathfrak{A} (Koecher [4], Kantor [3]). The adjoint representation of g_{0} on g_{-1} is faithful, and further the group $G^{0}(\mathfrak{H})$ coincides with the analytic subgroup of $G L\left(g_{-1}\right)$ corresponding to the Lie algebra $\mathrm{ad}_{\mathrm{g}_{-1}} \mathfrak{g}_{0}$. By applying a result of Takeuchi [8] to the graded Lie algebra \mathfrak{g}, we can conclude that the set $\mathfrak{A}_{k}=I I_{p+q=k} \mathfrak{U}_{p, q}(0 \leqslant k \leqslant r)$ is stable under the action of $G^{0}(\mathfrak{H})$. Also we use the invariance of the generic minimum polynomial $m_{a}(\lambda)$ under Aut \mathfrak{A}, and use the fact that the roots of the equation $m_{a}(\lambda)=0$ depend continuously on a.

Remark. (1) $\mathfrak{X}_{q, p}=-\mathfrak{A}_{p, q}$ holds.
(2) The orbit $\mathfrak{A}_{p, q}$ is open if and only if $p+q=r$. All open $G^{0}(A)$ orbits in \mathfrak{A} have been found by Satake [7].
(3) The open $G^{0}(\mathfrak{A})$-orbit $\mathfrak{A}_{r, 0}$ is an irreducible homogeneous self-dual convex cone, and $G^{0}(\mathfrak{H})$ coincides with the identity component of the automorphism group of the cone $\mathfrak{A}_{r, 0}$ (Koecher [4], Vinberg [9]).
2. Since the roots of the equation $m_{a}(\lambda)=0$ depend continuously on a, we have the following closure relation for $G^{0}(\mathfrak{H})$-orbits.

Theorem 2. With assumptions in Theorem 1, let $\overline{\mathfrak{A}}_{p, q}$ denote the closure of $\mathfrak{A}_{p, q}$ in \mathfrak{A}. Then we have

$$
\overline{\mathfrak{U}}_{p, q}=\prod_{\substack{p_{1} \leqslant p \\ q_{1} \leqslant q}} \mathfrak{n}_{p_{1}, q_{1}},
$$

where $p, q \geqslant 0, p+q \leqslant r$.
Corollary 3. Let $\partial \mathfrak{U}_{r, 0}$ be the boundary of the irreducible homogeneous self-dual cone $\mathfrak{A}_{r, 0}$. Then we have

$$
\partial \mathfrak{U}_{r, 0}=\mathfrak{U}_{r-1,0} \amalg I \mathfrak{A}_{r-2,0} \amalg \cdots \amalg \mathfrak{A}_{0,0}
$$

which is the stratification of $\partial \mathfrak{U}{\underset{U}{r, 0}}$ whose strata are all $G^{0}(\mathfrak{H})$-orbits.
3. We shall give a list of open $G^{0}(\mathfrak{H})$-orbits $\mathfrak{A}_{r-k, k}(0 \leqslant k \leqslant r)$ in each compact simple Jordan algebra \mathfrak{A}. It turns out that every orbit $\mathfrak{A}_{r-k, k}$ is an affine symmetric space of K_{ε}-type in the sense of Oshima-Sekiguchi [6].

\mathfrak{A}	deg \mathfrak{A}	$\mathfrak{A}_{r-k, k}(0 \leqslant k \leqslant r)$	
$H(r, R)(r \geqslant 3)$	r	$H^{r-k, k}(\boldsymbol{R})=G L(r, \boldsymbol{R}) / O(r-k, k)$	
$H(r, C)(r \geqslant 3)$	r	$H^{r-k, k}(\boldsymbol{C})=G L(r, C) / U(r-k, k)$	
$H(r, H)(r \geqslant 3)$	r	$H^{r-k, k}(\boldsymbol{H})=G L(r, H) / S p(r-k, k)$	
$\boldsymbol{R}^{m+2} \quad(m \geqslant 1)$	2	$\left\{\begin{array}{l} C^{2-k, k}(m+2)=\boldsymbol{R}^{+} \cdot O(m+1,1) / O(m+1) \\ C^{1,1}(m+2)=\boldsymbol{R}^{+} \cdot O(m+1,1) / O(m, 1) \end{array}\right.$	$\begin{aligned} & (k=0,2) \\ & (k=1) \end{aligned}$
$H(3, \boldsymbol{O})$	3	$\left\{\begin{array}{l} H^{3-k, k}(\boldsymbol{O})=\boldsymbol{R}^{+} \cdot E_{6(-26)} / \boldsymbol{F}_{4} \\ H^{3-k, k}(\boldsymbol{O})=\boldsymbol{R}^{+} \cdot E_{6(-26)} / \boldsymbol{F}_{4(-} \end{array}\right.$	$\begin{aligned} & (k=0,3) \\ & (k=1,2) . \end{aligned}$

Here $H(r, \boldsymbol{F})$ denotes the compact simple Jordan algekra of Hermitian
matrices of degree r with entries in the division algebra $\boldsymbol{F}=\boldsymbol{R}, \boldsymbol{C}, \boldsymbol{H}$ (=the quaternion algebra) or \boldsymbol{O} (=the octanion algebra). $\quad \boldsymbol{R}^{m+2}$ denotes the compact simple Jordan algebra of degree 2 of dimension $m+2 . \boldsymbol{R}^{+}$denotes the multiplicative group of positive real numbers.

$$
\begin{aligned}
& H^{r-k, k}(\boldsymbol{F})=\{X \in H(r, \boldsymbol{F}): \operatorname{sgn}(X)=(r-k, k)\}, \\
& C^{0,2}(n)=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \boldsymbol{R}^{n}: x_{1}^{2}>x_{2}^{2}+\cdots+x_{n}^{2}, x_{1}<0\right\}, \\
& C^{2,0}(n)=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \boldsymbol{R}^{n}: x_{1}^{2}>x_{2}^{2}+\cdots+x_{n}^{2}, x_{1}>0\right\}, \\
& C^{1,1}(n)=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \boldsymbol{R}^{n}: x_{1}^{2}<x_{2}^{2}+\cdots+x_{n}^{2}\right\} .
\end{aligned}
$$

The details of this note and its applications will be published elsewhere.

Added in proof. After this was submitted, the author found that Theorem 1 had been obtained by Satake independently (cf. I. Satake, On zeta functions associated with self-dual homogeneous cones; Reports on Symposium of Geometry and Automorphic Functions, Tohoku Univ., 145168, 1988).

References

[1] H. Braun and M. Koecher: Jordan-Algebren. Springer, Berlin-Heidelberg-New York (1966).
[2] N. Jacobson: Some groups of linear transformations defined by Jordan algebras. I. J. Reine Angew. Math., 201, 178-195 (1959).
[3] I. L. Kantor: Transitive differential groups and invariant connections on homogeneous spaces. Trudy Sem. Vekt. Tenz. Anal., 13, 310-398 (1966).
[4] M. Koecher: Positivitatsbereiche im R^{n}. Amer. J. Math., 79, 575-596 (1957).
[5] -_: Imbeddings of Jordan algebras into Lie algebras. I. ibid., 89, 787-816 (1967) ; ditto. II. 90, ibid., 476-510 (1968).
[6] T. Oshima and J. Sekiguchi: Eigenspaces of invariant differential operators on an affine symmetric space. Invent. Math., 57, 1-81 (1980).
[7] I. Satake: A formula in simple Jordan algebras. Tohoku Math. J., 36, 611-622 (1984).
[8] M. Takeuchi: Basic transformation groups of symmetric R-spaces. Osaka J. Math., 25, 259-297 (1988).
[9] E. B. Vinberg: Homogeneous cones. Soviet Math. Dokl., 1, 787-790 (1961).

