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87. The Period Map of a 4-parameter Family of K3 Surfaces
and the Aomoto-Gel’fand Hypergeometric
Function of Type (3, 6)"

By Keiji MATSUMOTO,*) Takeshi SASAKL**) and Masaaki YOSHIDA®)

(Communicated by Kunihiko KODAIRA, M. J. A., Oct. 12, 1988)

We show that one of Aomoto-Gel’fand hypergeometric functions ([4])
can be interpreted as the period map of a 4-dimensional family of K3
surfaces, of which the target is the 4-dimensional Hermitian symmetric
bounded domain of type IV. The corresponding system of differential
equations has six linearly independent solutions which are quadratically
related. (Such systems are recently studied in [10].) This fact confers an
algebro-geometric decoration to the Aomoto-Gel’fand functions as the rela-
tion between the elliptic modular function and the corresponding equation
does to the Gauss hypergeometric function. Details will be given in [6].

We describe a family of K3 surfaces. Let

L={", t*, t*) € CP*| v, t' 40, +0,,t* =0} 0L7<56)
be six lines in general position in the complex projective plane CP* with
homogeneous coordinates (¢!, t%, t*) and let S(I) be the minimal smooth model
of the two-fold cover S’(l) of CP* branching along the line configuration
I={,---,l}. For a fixed I, the surface S(l) is a K3 surface, i.e., there is
a unique holomorphic 2-form

(1) )= ]2[1 (v,,8" + 0,8 +v3,) "2 ds* N\ ds?,
j=

up to constant multiplication, and the rank of the second homology group
H,(S(1), Z) is 22. In this case, there are 16 linearly independent cycles; 15
exceptional curves coming from the 15 double points of S’(l) and a section
when considered S(I) as an elliptic surface over CP'. We can take a sys-
tem 7/(), - - -, 750 € H,(S@)Z) of six (transcendental) cycles orthogonal to
the algebraic cycles such that there exists another system 7,(0), - - -, 7:() €
H,(S(1), Z) which is dual to 1; 1<7<6), i.e., 1}-7;,=4,; (Kronocker’s symbol)
and that its intersection matrix (7;-7)) (1=1,7<6) takes the fixed form
I=(,), which is symmetric, integral and with the signature (2+,4-).
The vector o(l)=(w,1), - - -, w,()), where co,(l)=‘[ " () 1£7<£6), is called

the period of S(I) and it satisfies the Riemann rf’elation and the Riemann

inequality as follows

(2) > L0Do,d)=0
(3) 5 1, 0,05, >0.
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Now we let I vary in the space M of configurations of six projective lines
and let the cycles 7,(I) depend continuously on I. Then the correspondence
sending I to the ratio w,(D): - : w,(l) gives a multi-valued map ¢: M—Q
CCP’ where Q={(z', ---,2 e CP*| Y, ,I,2'2?=0}. The multi-valuedness
of ¢ is expressed by a subgroup of I'={X e GL(6, Z) |'XIX=1}/{+1}. If we
express elements of the space M by a 3 by 6 matrix (v,) 1=1<3,1<7<6)
then the map ¢ is invariant under the action of SL(3, C) on the left and the
action H=(C*)® from the right. Therefore ¢ is defined on the 4-dimensional
factor space X=SL(3,6)\M/H. Let us choose, for example, a system of
local coordinates (&', - - -, 2*) of X as follows:

1 00 1 11
(v“)=(0 1 0 1 & xz)

0 0 1 1 2 2«
i.e.
(4) L={t'=0}, L={t'=0}, L={t'=0}, L={'+t*+t'=0},

L={t'+ax't* +2°t*=0}, Ly={t'"+2"t* +x't’=0}.

Then by the theory developed in [10], there is a system of linear differen-
tial equations

2
(5) T g, Ty 2 O Lavu,  1<i,5<6

of rank (= dimension of the solution space) six such that the ratio of a
system of linearly independent solution (called a projective solution) is ex-
actly ¢, that the quadratic form g=3}; ,g,,dx'dx’ is conformal to the pull
back of the canonical flat conformal structure on @ CCP® and that other
coefficients af, and a}; (1<74, 7, k<6) are determined by g.

Here we recall the framework of the Aomoto-Gel’fand hypergeometric
differential equation associated with the Grassmannian G,, and see that
our system (5) is its special case. Let M(k,n) be the set of k& by » matrices
v=(v,,) and consider the integral

(6) ow=| 1 (Svut)" at

where 4 is a region of the (k— 1) dlmensmnal sphere S*-'CR* and dt is the
induced measure of the standard measure of the Euclidean space R* onto
S*tand > %_,a;=n—Ek. The function @(v) is invariant under the action of
SL(k,C) from the left and the action of H,=(C*)" from the right so that
it satisfies

(") gl Vij £; O=(a;,— DO (H ,-invariance)

for 1<j<n and

(8) ]i_lvl ; — ok (SL(k, C)-invariance)
for 1<, k< k. Importak;lt equalities are

(9) & O— &

00,00, 00,400
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for 114, 7<k, 1<p, g<n. The system of linear differential equations (7),
(8) and (9) is called the Aomoto-Gel’ fand hypergeometric equation of type
(k,m) ([11 and [3]) and denoted by E(k,n; ), - - -, @,). It is a holonomic
system, that is, its rank is finite. The systems E@2,4; «, - - -, ) and
E@2,n; ay, --+,a,) (n=5) can be naturally considered, respectively, to be
the Gauss hypergeometric equation and the Appell-Lauricella hypergeo-
metric system F', in n—3 variables.

The system E(3,6; «,, - - -, ;) reduces to the following system with un-
known u if one uses the independent variables z', .- ., 2* appeared in the
normalization (4).

(x+as+a,— 146,460,460, +0)0u=2"(6,+0;+1—a;) (0, + 0, +a)u

(Ct'2+a3+0(4—‘ 1+‘91+02 +6, +6’4)02u=x2(6’2 +04+1_056)(01+02 “l‘“z)u

(a2+a3+a4—1+01+02+03+04)03u=x3(0]—|—03+1—055)(03—|—04—|—a3)u

(“z+“3+054‘_1+01+'92+03+04)04u=x4(02+04+1—0(s)(03+04+“s)u
where ,=x'9/0x'. This system can be written in the form of (5) as follows:
(10) U@, TS A T A,

* oxtox’ 0x'gxt k=1 ox*
1<14, <6. The coefficients G,,= G,,’s of the principal part are independent
of the «,’s and are given as follows:

4 3 4 2 3__ ol 2l
G12= il-—iz’ 13=*—_z1_i3, G24= zz_ﬁ4, 34=——$3__i4y
G = Ta'—at ' —2") _ 2(x'—a°)
" l—a) 2 —at)  a'i—2d)’
Gy vat—2 2@—2)  2@—a) ’
2?A—2) 2@t —z")  H(P—2a)
G 2t — o B 2 (22— %) _ 24— 2Y)
-2 2@—a)  at—z)
-zt -2  2(a—ab) o
Gu= r(1—29 a'@'—2°) '@ —a7) Gru=Gy=1.

On the other hand, it is clear from the representations (1) and (6) that
our system (5) is equivalent to the system (10), with «;=1/2 for 1<75<6.
Therefore we know that the coefficients g,; of (5) are equal to G,;, so that
the quadratic form g=3, , G, dx*da’ is conformally flat.

The algebro-geometric interpretation of the system £(3,6;1/2,---,1/2)
given above shows that the system E(3,6; «y, - - -, «,), out of many systems
E(k,n;ay, -, a,) (k=3), is a valuable analogy of the Gauss hypergeometric
equation that has the fruitful relation with the elliptic modular function.
To conclude this paper, we list up the correspondence between our situa-
tion of K3 surfaces and the situation of elliptic curves: (a) Configuration
I of six lines in CP?« System of four points p=(p,, ---,p) on CP'. (b)
K3 surface S(I) <> Elliptic curve E(p) obtained by the two fold cover of CP*
branching at p. (c) Holomorphic 2-form 5(l) on S(I)«> Holomorphic 1-form
7(p) on E(p). (d) Transcendental cycles 1j(1) € H,(S(}), Z) <> Standard basis
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7.:(p) and 7,(p) of H(E(p),Z). (e) Intersection form I of the 7/()’s<> In-

tersection form (_‘_)1 %) of 7,(p) and 7,(p). (£) Periods wi(l)=f OPR
£1¢)]

Periods wi(p)=J;( )m(p). (2) The Riemann ineguality (2) <> Im o,(p)/w.(p)
i(p.

>0. (h) Period map ¢: l—o(l) € Q<> Period map p—w,(p)/w.(p) e H={z € C|
Im2>0}. (i) Group I' <> Group PSL(2, Z). (j) System E(3,6;1/2,..-,1/2)
<> System E(2,4;1/2, ---,1/2). (k) System (5) under the normalization (4)
<>The hypergeometric differential equation x(1—x)u”+Q—2x)u’'—A/4)u
=0 under the normalization p,=0, p,=oc0, p,=1, p,==.

Note. Such correspondence can be also found using various families
of curves of higher genera in place of K3 surfaces, which are studied in
[2], [5], [10] and [11].
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