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0. Let K be a complete discrete valuation field with residue field k.
‘We assume k is a perfect field of characteristic p>0. For a finite Galois
extension M /K with Galois group G, the Swan character Sw;: G—Z is
defined as follows.
Swg(o_)___{(I—UM(U(TEM)—‘TCM))'f fOI‘ 19&0‘61,
0 for o &I,
Sws(D)=— > Sws(o)-
1#£0¢EG

Here I denotes the inertia group, =, a prime element of M, v, the ncrmal-
ized valuation of M and f the degree of the residue field extension. Then
it is a classical result that Sw, is a character of a linear representation of
G and that it can be defined over the l-adic field @, (I#p) (resp. the fraction
field of the Witt ring W(k)) [2], [8]. We call it the Swan representation of
G and denote it by Sw,,, (resp. Sws,,).

In this note we construct Sw, , cohomologically (or geometrically)
when K is of equal characteristic p. The construction of Sw,,, ((=£p) was
done by Katz [7]. He uses his theory of canonical extension (cf. Theorem
in §3) and the machinery of l-adic etale cohomology. Instead of l-adic
etale cohomology, we use a new theory of de Rham-Witt complex with loga-
rithmic poles, which supplies us nice p-adic cohomology for open varieties.
Recently, general theory of crystals with logarithmic poles has been devel-
oped independently by G. Faltings [1] and K. Kato [6].

The content of this note is as follows. In §1-2 we introduce the de
Rham-Witt complex with logarithmic poles, and construct Sw, , in §3.
The author would like to thank Prof. K. Kato, whose observation explained
in §2 is the key to the definition of de Rham-Witt complex with logarithmic
poles.

1. In this and next section we introduce the de Rham-Witt complex
with logarithmic poles as a preparation for §3. Here we give a short ex-
position concerning what is necessary in §3, and full details will be treated
elsewhere. In this note we always consider sheaves and cohomologies in
the etale topology.

Let k be a perfect field of characteristic p >0, X a smooth scheme over
k and D a reduced normally crossing divisor in X. We will define sheaves
of complexes W,0Q5 (log D) (resp. W,2% (—log D)), which we shall call the de
Rham-Witt complex with logarithmic poles (resp. with minus logarithmic
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poles).

As we work with the etale topology, we may assume that there is a
smooth W=W(k)-scheme X and a relatively reduced normally crossing
divisor 9 such that X®, k=X and 9, X=D. Let D=3 D, (each D, is
irreducible). Then 9=>_ 9D, where D,=D,Qyk. We may assume more-
over that there is a “frobenius” f: X'—X such that f induces the absolute
frobenius on X and j*9P=p-9. For simplicity, we denote X,=XR, W,
where W,=W,(k). Consider the de Rham complex with logarithmic poles

DRy, (log 9): Op,—> 2%, (log D)—> 2% (og D)—>- - -

DRy, (—log D): IR0 r,—> IR0, (log D)—> IR 2%, (log D)—> - - -,
where Q% (log 9) is the differential forms with logarithmic poles along
DRy W, and 9 denotes the ideal sheaf of 9.

The key point is the observation due to K. Kato that the above complex
does not depend on the choice of 2, 9 and f in the derived category. This
point will be explained in §2.

Now we can define the de Rham-Witt complex with logarithmic poles
by the method of Illusie-Raynaud [5] III (1.5). We define

W.2%(+log D) := Y (DR, (+log D)).
These are naturally considered as coherent W,(©y)-modules. The boundary
d: W, 04 (xlog D)——> W 2% (4=log D) is defined to be the boundary map
induced from the exact sequence

0——>DR, (*+log 9)—> DRy, (+log D) —>DR,, (+log 9)—>0.

We next define the restriction z: W,,,2%(xlog D)—>W, 2% (+log D). One
checks that the endomorphism (f/p*') on Q% (log 9) (resp. IRQ%,w (og D))
induces an injection
p: W,Q% (+log D)—> W, 2% (£log D)

whose image coincides with p-W,,,2% (log D). This definition is independ-
ent of the choice of f, as is seen from the product construction in §2. Then
we define z to be the surjective homomorphism which makes the following
diagram commutative.

W 2% (£ log D)—">W 2% (log D)
P\ Ny
Wn+1'QfX(i10g D)'
We define WQ% (+log D)=lim, W,Q2%(+log D). The operator
F:W,,Q%(xlog D)—>W 2% (xlog D)
(resp. V: W, 0% (x+log D)——W,, 2% (+1og D))
is defined to be the map induced from the natural projection
DR, (+log 9)—>DR., (+log D)
(resp. “p”: DRy (+log 9)——>DRy, ., (+log D)).

There is a relation between the de Rham-Witt complex with logarith-
mic poles and the de Rham-Witt complex. Here we restrict ourselves to
the case dim X =1, as it suffices for later use. Let X be a proper smooth
curve over %k, and D, (resp. D.) be a disjoint union of closed points of X.
We assume D,N D.=¢ and define
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W.2y(og D;—log D) and WQ%(log D,—logD.)
to be the de Rham-Witt complex with logarithmic poles along D, and with
minus logarithmic poles along D_.. As is seen from the construction, we
have exact sequences of complexes
) 0—> W, Q2% (og D,—log D_)—>W Q2% (log D)—>1t, « W, 25 _——>0,
0—> W Q05— W 2% (log D)—>iyx W, 05 [ —1]—>0,
where 7, (resp. i..) denotes the closed immersion, and [—1] denotes the shift
of the complex. By passing to the limit, we obtain
() 0—> W25 (og D,—log D)) —> W (log D)—>t,x WQ; —>0,
0—>WQRy——> WO (log Dy)—>iyx W5, [—1]1—>0.
Lemma. (1) HY X, WQy;(og D,—log D.)) is a free W-module of
finite rank for all ¢>0 and vanishes for all ¢>3.
(2) If Dy+#¢, we have H X, WQ%(log D,—log D.))=0.
(3) If D.+¢, we have H"X, WQy(logD,—log D.))=0.
By (%), each HYX, W,02(og D,—log D.)) is a finitely generated W-
module. So
H«X, W2y (og D,—log D.))=1im HY(X, W ,2% (log D,—log D..).

By definition, (2) (resp. (3)) is reduced to the fact H'(X, 2% (log D,))=0
(resp. H(X, J,,_)=0). The assertion (1) can be seen from the assumption
dim X=1.

2. In this section we explain how one sees that DR, (+log D) de-
fined in §1 does not depend on the choice of liftings ¥, 9 and f in the
derived category.

Choose another lifting X/, 9’ and f’. Let h: X—->X®y, D’ be the blow-
ing up defined by the product ideal of the ideals defined by 9, X D; (1<
<a), and let <U be the complement of the strict transforms of the closed
subschemes X' X D} and D, X » X’ (1<i<a). By direct calculation, we see
that U—X (resp. U—X’) is smooth, and that the inverse image 9 in U
of DX9' coincides with the inverse image of 9 (resp. 9’). Moreover
there is a closed immersion XGU such that XCQU—-X X X’ coincides
with the diagonal embedding. For this, note that the locus of the blow-
ing-up is codimension one in X.

Let & be the structure sheaf of the divided power envelope of U,=
URy W, with respect to the ideal defined by the image of X. We define
complexes
PODRy,(og 9): P—>PR,2%, (log D)—> PR, 2%, (log D)—,

PRDRy;, (—log D) : IP—>IPRoD;, (0g D)—>IPR, 2%, (og D)—>,
where ©O=0sy, and J denotes the ideal sheaf of J.
Now the following lemma shows DRy, (+log 9,)~DR,(+log D).
Lemma. The natural homomorphisms
DRy, (+log 9)—>PRDR,, (+log 9) and
DRy, (:log 9)——>P@DRy, (+log 9)
are quasi-isomorphisms.
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We give a proof for the first morphism. The problem is etale local on
X. Sowe may assume U=XQ®, WI[S,, ---, S;]. Hence we have
PRDR,, (log @) ~DRy, (£10g D.)®w, (2y,:51®w .51 W {S)),
where W,[S] (resp. W,{(S)) denotes the polynomial ring (resp. divided
power algebra) in d variables S,, - - -, S;. The lemma follows from the fact
that Q4,161 ®w.s1 W.(S) is quasi-isomorphic to W,.
(to be continued.)
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