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1. Introduction. Let X be a Banach space, and let B(X) be the set
of all bounded linear operators from X into itself. Arendt [1] introduced
the notion of integrated semigroups and obtained the following generaliza-
’tion of the Hille-osida theorem" A closed linear operator A is the gen-
erator of a once integrated semigroup {U(t) t_0} on X satisfying U(t+h)
--U(t)ll<_Mhe+ for t, h_0 if and only if (a, oo)p(A) and
M/(--a) for a and m_l, where M0 and a0 are constants. More-
over, the part of A in D(A) is the generator of a (C0)-semigroup on D(Aj.

Let C eB(X)be injective. In this paper we introduce the notion of
integrated C-semigroups and prove the following theorems.

Theorem 1. An operator A is the generator of an integrated C-semi-
group {U(t) t_O} on X satisfying
(1.1) I]U(tq-h)-U(t)]]<_Mhe(t+) for t,h_O,
where MO and a_0 are constants, if and only if A satisfies the following
properties (A1)-(A3) and it is maximal with respect to (A1)-(A3)"
(A1) A is a closed linear operator and --A is in]ective for Ra
(A2) D((--A)-)R(C) and II(--A)-C[]M/(-a) for >a and m_l;
(A3) Cx e D(A) and ACx=CAx for x e D(A).

Theorem 2. If A satisfies the equivalent conditions of Theorem 1,
then the part of A in D(A) is the generator of a Cl-semigroup {Sl(t) t_0} on
D(A) satisfying IIS(t)xll<_Me I]xll for x e D(A) and t>_O, where

The above-mentioned Arendt’s results are the case of C I (the identity)
in Theorems I and 2. As direct consequences o Theorems I and 2 we have"

Corollary 1. If A satisfies (A1)-(A3) in Theorem 1 then C-AC is the
generator of an integrated C-semigroup {U(t); t>0} on X satisfying
llU(t+h)--U(t) I_Mhe(+) for t,hO.

Corollary 2 ([2, Corollary 13.2]). Suppose R(C)-X. A is the gener-
ator of a C-semigroup {S(t) tO} on X satisfying IIS(t)[[gMet for tO if
and only if A is maximal with respect to (A2), (A3) in Theorem I and "(AI’)
A is a closed linear operator with D(A)=X and 2-A is in]ective for a".

2. Integrated C-semigroups. Let C e B(X) be injective. A amily

(U(t) t_0} in B(X) is called an integrated C-semigroup on X, i
(2.1) U(.)x" [0, oo)-X is continuous or x e X,
(2.2) U(t)x=O or all t0 implies x=0,
(2.3) there exist K0 and b0 such that [IU(t)[I_Ke or t0,
(2.4) U(0)=0 (the zero operator) and U(t)C=CU(t) tor t0,
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(2.5) U(t)U(s)x= U(r)Cx dr- U(r)Cx dr or x e X and t, s0.
Let (U(t); t0} be an integrated C-semigroup on X. For

max (0, lim (log U(t)])/t} we define L() e B(X) by

L()x=_l" e-U(t)x dt orxe X.

Clearly L()C=CL() or o0, and a simple computation yields
L(I)C-L()C-- ( [)L()L([) or ,/

It follows rom this that L(/) is injective or/0 and the ollowing holds"

(2.6) {x e X Cx e R(L(2))}= {x e X Cx e R(L(/))} (=D(A)),
(--L()-’C)x=(I--L(p)-’C)x or 2,/>o0 and x e D(A).

Therefore the closed linear operator A defined by
Ax=(--L(,D-C)x or x e D(A)--{x e X; Cx e R(L())}

is independent of o0. The operator A is called the generator o the
integrated C-semigroup {U(t); t0}. The generator has the ollowing
(2.7) Cx e D(A) and ACx--CAx or x e D(A),

(--A)L()x-- Cx or x e X and
(2.8)

L()(--A)x Cx or x e D(A) and o0.

txample. Let Z be the generator of a C-semigroup {S(t) t0} on X
with IIS(t)ll_Me or t>0, whereM0 and a0 are constants. (We refer
to [2, 4] or C-semigroups.) Define U(t)e B(X) or t0 by

U(t)x=_Ii S(s)x ds or x e X.

Then {U(t);t0} is an integrated C-semigroup on X whose generator is Z,
and ][U(t+h)-U(t)ll_Mhe(+) or t,hO.

Lemma. Let A be the generator of an integrated C-semigroup {U(t)
t0} on X. Then for tO we have

(2.9) AU(t)x= U(t)Ax and U(t)x= tCx+[. U(s)Ax ds for x e D(A),

(2.10) toU(S)xdseD(A)and U(t)x=tCx+AtoU(S)xds forxeX.
Moreover, if {U(t) t0} satisfies (1.1) then A satisfies (A1)-(A3).

Proof. By (2.8), -A is injective and

(-A)-’Cx [; e- U(t)x dt or >0 and x e X.

Set f(, x)=-’(-A)-’Cx or x e X and >o0. The Post-Widder inversion
ormula [3, Theorem 6.3.5] implies
(2.11) U(t)x=lim_((-1)/m!)(m/t)+’f()(m/t,x) for xeX and t>0.

Let x e D(A). Then f(, Ax)=Af(, x) by (2.7), which implies f()(, Ax)
=Af()(, x) for 2>o0 and m0. Combining this with (2.11) we see that
U(t)xeD(A) and AU(t)x=U(t)Ax or t0. Similarly as in the proof of
[1, Proposition 3.3], we obtain the latter half of (2.9) and (2.10).

Suppose that {U(t); t0} satisfies (1.1). SinceaoobyllU(t) gMte,
A satisfies (A1), (A3) (=(2.7)) and

(2.12) (-A)-’Cx=[ e-tU(t)x dt for x e X and
30
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Moreover, by induction on m we obtain for x e X, a and m2
(-A)-Cx=(C-1L())Cx

(2.13) =:. .: e-(tl/’"/t(U(tl +...+t)x- U(+ +)x)d. .d.
Let x e X, x* e X* (the dual of X), )a and ml. By (1.1), x*(U(t)x) is
differentiable and (d/dt)x*(U(t)x)]Meat ]x* x]] or a.e.t. Therefore

x*(U(t+ h)x- U(t)x)

(d/ds)x*(U(s)x)ds M x* lx ea+ds for t, h0.
Combining this with (2.13) and (2.12) we obtain (A2). Q.E.D.. Proof of Theorems.

Proof of Theorem 1. (Necessity) Let A be the generator o an inte-
grated C-semigroup {U(t) t0} on X satisfying (1.1). A satisfies (A1)-(A3)
by Lemma. Suppose that satisfies (A1)-(A3) with A replaced by and
A. To show =A, let x e D() and set f(, z)=-(--A)-Cz or z e X
and 20. For 20, f(2,x)=2-(2-)-Cx=2-(2-)-Cx=f(, x)
which implies f()(2, x)=f()(2, x) or m0. Combining this with (2.11)
we see that U(t)x e D() and U(t)x= U(t)x or t0. Hence

Cx (2-).[; 2e-t U(t)x dt [; 2e -t U(t)(2-)x dt L(2)(2--)x

for 2w0, which implies x e D(A). Thus =A.
(Sufficiency) For x e X and ml,

R()Cx= C_(Z-)-+R(z)+Cx or Z>>a,
where R(2)= (2--A) -, which implies (d/d2)R(2)Cx= --mR(2)+Cx or
Now, by induction on m we obtain that or x e X, 2a and ml,
(3.1) (d/d)(--A)-Cx=m (--1)(-A)-(+)Cx.
Hence by (A2), ](d/d)(--A)-Cx]m M xl/(--a)
and m0. By [1, Corollary 1.2] there exists a amily {U(t) t0} in B(X)
such that U(O)=O, ]U(t+h)--U(t) Mhe(t+) or t,hO and

(3.2) (--A)-Cx=.[ e-t U(t)x dt for x e X and >a.

Clearly {U(t); t0} satisfies (2.1)-(2.3). Since (A3) is equivalent to
(A3’) (-A)-Cx=C(2-A)-x for a and x e D((-A)-),
it follows from (3.2) that

[; e- U(t)Cx dt=[; e-CU(t)x dt for x X and a.
By the uniqueness theorem for Laplace transforms we see that U(t)C=
CU(t) for t0, i.e., (2.4) holds. Since (--A)-Cx-(z-A)-Cx=(z-)(
A)-(z--A)-Cx for x e X and , pa, similarly as in the proof of [1,
Theorem. 3.1] we see that (2.5) holds.

Let be the generator of {U(t) t0}. To see A, let x e D(A) and
put (-A)x=y, where 2aw0. By (A3’) and (3.2) we see that

cz u(t) 
3o
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Hence x e D(A) and Ax=x-L()-Cx=Ax. This means AcA. Hence we
obtain A-A, because A sa.tisfies (A1)-(A3) with A replaced by A rom
Lemma and A is maximal with respect to the properties (A1)-(A3). Q.E.D.

Proof of Theorem 2. As in the proof of [1, Corollary 4.2] we see that
U(.)x e C([0, ),X) a.nd (d/dt)U(t)x eD(A) or x eD(A) a,nd t_0.

Now, or t_0, define S(t)" D(A)-D(A) by &(t)x=(d/dt)U(t)x for
x eD(A). Then (&(t);t_O} is a C-semigroup on D(A) satisfying (3.3)-
(3.6), where C=CI);
(3.3) IIS(t)xll_Me Ilxll for x e D(A),
(3.4) [l&(t+h)x--&(t)xll_Mhe(/) IIAx for x e D(A) and t, h0,

(3.5) S(t)x=Cx+A.[i &(s)xds or x e D(A) and t_0,

(3.6) (-A).I e-S(t)x dt=Cx or x e D(A) and 2>a.

In fact, (3.3)-(3.5) ollow rom (1.1), (2.9) and (2.10). Differentiating

U(t)U(s)x= U(r)Cx dr-- U(r)Cx dr

with respect to s and t, we get S(t)S(s)x=&(s+t)Cx for D(A) and t, s_0.
Thus {&(t) t_0} is a C-semigroup on D(A). (3.6) ollows from (2.8).

Finally, let A be the part of A in D(A) and let Z be the generator of
the C-semigroup {&(t) t0} on D(A). To see A=Z, let x e D(AO. Ax=
Axe D(A) and AU(t)x= U(t)Ax imply &(t)x e D(A) and A&(t)x=&(t)Ax.
From this and (3.6) we see tha.t ora

Cx=I e-&(t)(2-A)x dt=P(2-A)x, where z=I e-tSl(t)z dt

or z e D(A) and a. From the definition of generator it follows that
Z1x__(/--ICI)x--Ax. Thus we get AcZ. Next, as in the proof of [4,
Theorem 2.1] we have ZcCAC. Moreover CACcC-AC=A, because
C-AC satisfies (A1)-(A3) with A replaced by C-AC and A C-AC by (A3).
This implies CACcA. Hence ZA. Q.E.D.

Proof of Corollary 1. By the maximal principle there is an AA such
that is maximal with respect to (A1)-(A3). We see that fiC-AC a.nd
C-AC satisfies (A1)-(A3). Therefore C-AC=A. Q.E.D.

Corollary 2 follows from [2, Proposition 7], Example and Theorems 1, 2.
Remark. Let A satisty (A1)-(A3). A is maximal with respect to the

properties (A1)-(A3) i and only i A=C-AC.
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