50. Zeros of $L(s, \chi)$ in Short Segments on the Critical Line

By Yoichi Motohashi
Department of Mathematics, College of Science and Technology, Nihon University
(Communicated by Kunihiko Kodaira, m. J. A., May 12, 1988)

1. Let $L(s, \chi)$ be the Dirichlet L-function with χ primitive $(\bmod k)$, $k>1$. Let $N_{0}(T, \chi)$ be the number of zeros of $L(s, \chi)$ on the segment $s=1 / 2$ $+i t, 0 \leqq t \leqq T$. The purpose of the present note is to give a brief proof of

Theorem. Let $T \geqq k^{(1 / 2)+6 \varepsilon}, U \geqq(k T)^{(1 / 3)+2 \varepsilon}$ with small $\varepsilon>0$. Then we have

$$
N_{0}(T+U, \chi)-N_{0}(T, \chi)>_{\varepsilon} U \log T
$$

This should be compared with Karatsuba [2], and we stress that a minor modification of our argument can yield a slight improvement upon his result. There are two important ingredients in our argument: One is Atkinson's method [1], and the other is Weil's result [6] on character sums. More specifically, we have combined Selberg's ideas [5] with ours [3]-[4].
2. Here we outline our proof of the theorem. The details will be published elsewhere.

Let $L(s, \chi)=\psi(s, \chi) L(1-s, \bar{\chi})$ be the functional equation for $L(s, \chi)$, and put $X(t, \chi)=\psi^{-1 / 2}(1 / 2+i t, \chi) L(1 / 2+i t, \chi)$ which is real for real t. Also, as in [5], let $\alpha(\nu)$ be the coefficient in the Dirichlet series expansion for $\zeta(s)^{-1 / 2}$, and let $\beta(\nu)=\alpha(\nu)(\log \xi / \nu) / \log \xi$ with ξ to be determined later. We put

$$
\eta(t, \chi)=\sum_{\nu<\xi} \chi(\nu) \beta(\nu) \nu^{-(1 / 2)-i t}
$$

And we consider the estimation of

$$
\begin{aligned}
& I=\left.\left.\int_{-U \log T}^{U \log T}\left|\int_{0}^{H} X(T+t+u, \chi)\right| \eta(T+t+u, \chi)\right|^{2} d u\right|^{2} e^{-(t / U)^{2}} d t \\
& J=\int_{-U \log T}^{U \log T}\left|\int_{0}^{H} L\left(\frac{1}{2}+i(T+t+u), \chi\right) \eta^{2}(T+t+u, \chi) d u-H\right|^{2} e^{-(t / U)^{2}} d t,
\end{aligned}
$$

where $H \ll 1,(k T)^{(1 / 3)+2 \varepsilon} \leqq U \leqq T^{1-\varepsilon}$.
Invoking the result of [4] we have, as a first step,

$$
I \ll U \xi^{2} T^{-\varepsilon}+\int_{0}^{H} \int_{0}^{H}\left(\frac{k T}{2 \pi}\right)^{(i / 2)(u-v)} \sum_{\nu<\xi} \frac{\chi\left(\nu_{1} \nu_{2}\right) \bar{\chi}\left(\nu_{3} \nu_{4}\right)}{\left(\nu_{1} \nu_{2} \nu_{3} \nu_{4}\right)^{1 / 2}}\left(\frac{\nu_{3}}{\nu_{1}}\right)^{i u}\left(\frac{\nu_{4}}{\nu_{2}}\right)^{i v} \beta\left(\nu_{1}\right) \beta\left(\nu_{2}\right) \beta\left(\nu_{3}\right) \beta\left(\nu_{4}\right)
$$

$$
\begin{align*}
& \times \int_{-U \log T}^{U \log T} e^{-(t / U)^{2}} L\left(\frac{1}{2}+i(T+t+u), \chi\right) L\left(\frac{1}{2}-i(T+t+v), \bar{\chi}\right) \tag{1}\\
& \times\left(\frac{\nu_{3} \nu_{4}}{\nu_{1} \nu_{2}}\right)^{i(T+t)} d t d u d v .
\end{align*}
$$

Then we apply a modified version of Atkinson's splitting argument to this product of values of L-functions. For this sake let a, b be two positive integers such that $(a, b)=1$ and $(a b, k)=1$. And we write, for $\operatorname{Re}(z)>1$, $\operatorname{Re}(w)>1$,

$$
L(z, \chi) L(w, \bar{\chi})=\left\{\sum_{a m=b n}+\sum_{a m<o n}+\sum_{a m>b n}\right\} \chi(m) \bar{\chi}(n) m^{-z} n^{-w} .
$$

The first sum is $\bar{\chi}(a) \chi(b) a^{-w} b^{-z} L\left(z+w, \chi_{0}\right)$ where χ_{0} is the principal character $(\bmod k)$. The other two sums are treated as in [3, V], and we get, for $\operatorname{Re}(z)$ $<1, \operatorname{Re}(w)<1$,

$$
\begin{aligned}
& L(z, \chi) L(w, \bar{\chi})=\bar{\chi}(a) \chi(b) a^{-w} b^{-z} L\left(z+w, \chi_{0}\right) \\
& \quad+\bar{\chi}(a) \chi(b) k^{1-z-w} a^{z-1} b^{w-1} \Gamma(z+w-1) \zeta(z+w-1) \prod_{p \mid k}\left(1-p^{z+w-2}\right) \\
& \quad \times\left\{\frac{\Gamma(1-w)}{\Gamma(z)}+\frac{\Gamma(1-z)}{\Gamma(w)}\right\}+\bar{\chi}(a) \chi(b) a^{z-1} b^{w-1}\left(g_{a, b}(z, w ; \chi)+g_{b, a}(w, z ; \bar{\chi})\right) .
\end{aligned}
$$

Here

$$
\begin{align*}
& g_{a, b}(z, w ; \chi)=\chi(a) a^{1-z}\left\{\Gamma(z) \Gamma(w)\left(e^{2 \pi i z}-1\right)\left(e^{2 \pi i w}-1\right)\right\}^{-1} \sum_{c=0}^{b-1} \sum_{m, n=1}^{k} \chi(m) \bar{\chi}(a m+n) \\
& \quad \times \int_{c} \int_{c} \frac{x^{z-1} y^{w-1} e^{-n(y-2 \pi i c / b)}}{1-e^{-k(y-2 \pi i c / b)}}\left\{\frac{e^{-m(x+a y-2 \pi i a c / b)}}{1-e^{-k(x+a y-2 \pi i a c / b)}}-\frac{\delta(c)}{k(x+a y)}\right\} d x d y, \tag{3}
\end{align*}
$$

where $\delta(c)=1$ if $c=0$ and $\delta(c)=0$ if $c \neq 0$, and the contour \mathcal{C} is as in [3]. In (2) we set $z=1 / 2+i(T+t+u), w=1 / 2-i(T+t+v), a=\nu_{1} \nu_{2} /\left(\nu_{1} \nu_{2}, \nu_{3} \nu_{4}\right), b=$ $\nu_{3} \nu_{4} /\left(\nu_{1} \nu_{2}, \nu_{3} \nu_{4}\right)$, and insert it into (1). The contribution to I of the first two terms on the right of (2) can be estimated as in [5], and we see that it is $\ll U H^{3 / 2}(\log \xi)^{-1 / 2}$, providing $(\log \xi)^{-1} \leqq H \leqq(\log \xi)^{-1 / 2}$. Hence, for such H we have

$$
\begin{align*}
I & \ll U \xi^{2} T^{-\varepsilon}+U H^{3 / 2}(\log \xi)^{-1 / 2}+\sum_{\substack{\nu}}\left(\nu_{1} \nu_{2} \nu_{3} \nu_{4}\right)^{-1} \\
& \times \int_{0}^{H} \int_{0}^{H}\left|\int_{-\infty}^{\infty} e^{-(t / U)^{2}} g_{a, b}\left(\frac{1}{2}+i(T+t+u), \frac{1}{2}-i(T+t+v), \chi\right) d t\right| d u d v, \tag{4}
\end{align*}
$$

where a, b are as above.
On the other hand, when $\operatorname{Re}(z)<0, \operatorname{Re}(w)>1$, we may deduce, from (3), $g_{a, b}(z, w ; \chi)=h_{a, b}(z, w ; \chi)+\overline{h_{a, b}(\bar{z}, \bar{w} ; \bar{\chi})} ;$

$$
h_{a, b}(z, w ; \chi)=\sum_{n=1}^{\infty} \sigma_{1-z-w}(n, \chi ; a b) e^{-2 \pi i \tilde{u} \pi n / b} \int_{0}^{\infty} x^{-z}(1+x)^{-w} e^{-2 \pi i n x / a b k} d x,
$$

$$
\sigma_{1-z-w}(n, \chi ; a b)=k^{-1} \sum_{f g=n} g^{1-z-w} \sum_{m=1}^{k} \chi(m) \bar{\chi}(m+g) e^{2 \pi i \overline{a b} m f / k},
$$

where $a k \tilde{a k} \equiv 1(\bmod b)$ and $a b \overline{a b} \equiv 1(\bmod k)$. Then we have to find an analytic continuation of $h_{a, b}(z, 1-z-i \tau ; \chi)$ which is defined for $\operatorname{Re}(z)<0$ and real τ. This is accomplished, as in [3, II], by computing the truncated Voronoi formula for the sum

$$
A(x)=\sum \underset{\substack{\sigma_{i \check{ }}(n}}{ }(n, \chi ; a b) e^{-2 \pi i \widetilde{a k} n / b},
$$

which yields, uniformly for $X \geqq 1, \tau \ll 1$, and arbitrary a, b,

$$
\int_{X}^{2 X}|A(x)|^{2} d x \ll{ }_{\varepsilon} X^{3 / 2}+(k X)^{1+\varepsilon}
$$

and thus a continuation of $h_{a, b}(z, 1-z-i \tau ; \chi)$ to $\operatorname{Re}(z)<3 / 4$. With this we may follow closely the argument of [3]-[4], and show that the infinite integral in (4) is $\ll a b T^{\varepsilon}(k T / U)^{1 / 2}$. Namely we have

$$
I \ll U H^{3 / 2}(\log \xi)^{-1 / 2}+U \xi^{2} T^{-\varepsilon}+\xi^{2} T^{\varepsilon}(k T / U)^{1 / 2} .
$$

In much the same way we can show the same estimate for J. Then,
choosing $\xi=T^{c(\varepsilon)}$ appropriately we obtain the upper bound $\ll U H^{3 / 2}(\log \xi)^{-1 / 2}$ for both I and J, providing $(k T)^{(1 / 3)+2 \varepsilon} \leqq U \leqq T^{1-\varepsilon}$. The rest of the proof is much the same as the corresponding part of [5].

References

[1] F. V. Atkinson: The mean-value of the Riemann zeta-function. Acta Math., 81, 353-376 (1949).
[2] A. A. Karatsuba: On the zeros of the function $\zeta(s)$ on short intervals of the critical line. Math. USSR Izv., 24, 523-537 (1985).
[3] Y. Motohashi: A note on the mean value of the zeta and L-functions. II. Proc. Japan Acad., 61A, 313-316 (1985) ; V. ibid., 62A, 399-401 (1986).
[4] --: On the mean square of L-functions. Mimeographed note (1986).
[5] A. Selberg: On the zeros of Riemann's zeta-function. Skr. Norske Vid. Akad. Oslo I. Mat. Naturvid. Kl., no. 10 (1942).
[6] A. Weil: On some exponential sums. Proc. Nat. Acad. Sci. USA., 34, 204-207 (1948).

