48. Classification of Normal Congruence Subgroups of $G(\sqrt{q})$. I

By Toshikazu TAKAGI College of Arts and Sciences, Showa University (Communicated by Shokichi IYANAGA, M. J. A., May 12, 1988)

1. Normal congruence subgroups of the modular group $SL_2(Z)$ was completely classified by McQuillan [1]. As a continuation, Parson [2] attempted the classification of normal congruence subgroups of the group $G(\sqrt{q})$ (q=2,3) and obtained partial results. The present author classified all normal congruence subgroups of the group $G(\sqrt{q})$ for any prime q ([3]). In this note, the main results of [3] are reported.

2. In the following, we denote by $(a, b; c, d) a 2 \times 2$ matrix such that the first (resp. second) row is $(a \ b)$ (resp. $(c \ d)$). For a rational prime q, the group $G(\sqrt{q}) (=\Gamma)$ is defined by $G(\sqrt{q}) = W^{-1}N(\Gamma_0(q))W$, where W $= (1, 0; 0, \sqrt{q})$ and $N(\Gamma_0(q))$ is the normalizer of $\Gamma_0(q)$ in $SL_2(\mathbb{R})$. The group $\Gamma^e = W^{-1}\Gamma_0(q)W$ is a normal subgroup of Γ with index 2, and $\Gamma = \Gamma^e \cup S\Gamma^e$ where S = (0, -1; 1, 0). We call elements of Γ^e (resp. $S\Gamma^e$) even (resp. odd). Also a subgroup G is called even or odd according as $G \subset \Gamma^e$ or $G \not\subset \Gamma^e$. Let R and n denote the ring of integers of the quadratic field $Q(\sqrt{q})$ and a nonzero ideal of R respectively. Since Γ is a subgroup of $SL_2(\mathbb{R})$, the principal congruence subgroup $\Gamma(n)$ of Γ can be defined as usual. Set $L = N \cup Nq^{1/2}$. A subgroup G of Γ is called a *congruence subgroup* if G contains $\Gamma^e(L)$ $(=\Gamma(L) \cap \Gamma^e)$ for some $L \in L$, and the *level* of G is defined to be the smallest element L with such a property. We shall classify in § 3-4 (resp. 5) even (resp. odd) normal congruence subgroups.

3. For each $L \in L$, set $H_q(L) = \Gamma^e / \Gamma^e(L)$. For a subgroup N of $H_q(L)$, the *level* of N can be defined similarly as in case of a subgroup of Γ . Denote by σ the automorphism of Γ^e defined by $X \mapsto S^{-1}XS$. σ induces an automorphism of $H_q(L)$, which is also denoted by σ . Then in order to classify all even normal congruence subgroups, it is sufficient to classify all normal σ -subgroups of $H_q(L)$ which are of level L.

Here we treat the case where L is a power of a prime. Suppose now that $L=q^s$ with $q\neq 2$, where s=m or m-1/2 $(m \in N)$. Since $H_q(q^{1/2})$ is a cyclic group of order q-1, there exists a unique subgroup of $H_q(q^{1/2})$ of index ν for each divisor ν of q-1 $(\nu \neq 1)$. It is denoted by $T_{(\nu)}^{(q)}$. Let B_{m-1} and C_{m-1} be two elements of $H_q(q^m)$ defined by $B_{m-1}=(1, q^{m-1}\sqrt{\overline{q}}; 0, 1)$ and $C_{m-1}=(1, 0; q^{m-1}\sqrt{\overline{q}})$ where - indicates residue class mod L. When q=3 or 5, we denote by $R_m^{(q)}$ (resp. $S_m^{(q)}$) the cyclic group of order q generated by $B_{m-1}C_{m-1}^{-1}$ (resp. $B_{m-1}C_{m-1}$).

Theorem 1. When $L=q^s$ $(q \neq 2, s=m, m-1/2 \ (m \in N))$, all normal σ -

subgroups N of level L of $H_{a}(L)$ are the following:

- (1) $L = q^{1/2}$: $N = T^{(q)}_{(\nu)}(\nu | (q-1), \nu \neq 1)$.
- (2) $L=q^{m-1/2} \ (m \ge 2) \ or \ q^m \ (q \ne 3, 5, \ m \ge 1): \ N=1, \ \pm I.$
- (3) $L=q^{m}(q=3, 5, m\geq 1): N=1, \pm I, R_{m}^{(q)}, \pm R_{m}^{(q)}, S_{m}^{(q)}, \pm S_{m}^{(q)}$

Suppose now $L=2^s$, where q=2 and s=m or m-1/2 $(m \in N)$. When s=m-1/2, $K_{m-1/2}$ denotes the group of order 2 generated by $-(1+2^{m-1})I$ $(m \ge 3)$. When s=m, there exist many normal σ -subgroups. Set $d_0=5$ $(mod 2^m) \in (\mathbb{Z}/2^m \mathbb{Z})^{\times}$. Let B_k , C_k and D_k be elements of $H_2(2^m)$ defined by $B_k=(1, 2^k\sqrt{2}; 0, 1), C_k=(1, 0; 2^k\sqrt{2}, 1), D_k=(d_0^{-t}, 0; 0, d_0^t)$ $(t=2^k)$, where $k=0, 1, \dots, m$. Set $B=B_0$, $C=C_0$, $D=D_0$. If $t=2^{m-3}$ $(m \ge 3)$, then $d_0^t=d_0^{-t}=1+2^{m-1}$ $(mod 2^m)$, hence $D_{m-3}=(1+2^{m-1})I$. If $t=2^{m-4}$ $(m \ge 5)$, then $d_0^t=1+2^{m-2}+2^{m-1}$ $(mod 2^m)$ and $d_0^{-t}=1+2^{m-2}$ $(mod 2^m)$.

Now let us define some σ -invariant normal subgroups of $H_2(2^m)$ which are of level 2^m . (i) m = 1: $E_1 = \langle BC \rangle$. (ii) m = 2: $E_2^+ = \langle B_1C_1 \rangle$, $E_2^- = \langle -B_1C_1 \rangle$, $K_2 = \langle -B_1, C_1 \rangle$, $R_2 = \langle BC^{-1} \rangle E_2^+$, $S_2 = \langle BC \rangle E_2^+$. (iii) $m \ge 3$: $E_m^+ = \langle E \rangle$, $E_m^- = \langle -E \rangle (E = B_{m-1}C_{m-1})$, $F_m^+ = \langle D_{m-3} \rangle$, $F_m^- = \langle -D_{m-3} \rangle$, $G_m^+ = \langle G \rangle$, $G_m^- = \langle -G \rangle (G = B_{m-1}C_{m-1})$, $H_m^+ = \langle C_{m-1}D_{m-3} \rangle E_m^+$, $H_m^- = \langle -C_{m-1}D_{m-3} \rangle E_m^+$, $I_m = \langle -B_{m-1}, -C_{m-1} \rangle$, $J_m^{++} = E_m^+ F_m^+$, $J_m^{--} = E_m^- F_m^-$, $K_m^+ = I_m F_m^+$, $K_m^- = I_m F_m^-$, $L_m^+ = \langle L \rangle H_m^+$, $L_m^- = \langle -L \rangle H_m^+ (L = B_{m-2}C_{m-2})$, $M_m^+ = \langle M \rangle H_m^+$, $M_m^- = \langle -M \rangle$ $H_m^+ (M = B_{m-2}C_{m-2})$, $E_{m-1}^{m+1} = M_m^+ F_m^-$, $E_m^{m-1} = M_m^- F_m^-$. (iv) m = 3: $P_3 = \langle BC^{-1} \rangle L_3^+$, $Q_3 = \langle BC^{-1}D \rangle L_3^+$, $S_3^+ = \langle BC \rangle E_2^{3+}$, $S_3^- = \langle -BC \rangle E_2^{3+}$. (v) $m \ge 4$: $N_m^+ = \langle N \rangle F_m^+$, $N_m^- = \langle -N \rangle F_m^+ (N = B_{m-2}C_{m-2})$, $O_m^+ = \langle O \rangle F_m^+$, $O_m^- = \langle -O \rangle F_m^+ (O = B_{m-2}C_{m-2}^{-1})$. D_{m-4}), $G_{m-1}^{m-1} = N_m^+ I_m$, $G_{m-1}^{m-1} = N_m I_m$.

 P_3 and Q_3 are not abelian and contain L_3^+ with index 4. S_3^+ and S_3^- are not abelian and contain E_2^{3+} with index 2. The other groups are all abelian.

Theorem 2. When $L=2^s$ $(q=2, s=m \text{ or } m-1/2 \ (m \in N))$, all normal σ -subgroups N of level L of $H_2(L)$ are the following:

```
(1) L=2^{1/2}: N \text{ does not exist.}
```

- (2) $L=2^{3/2}: N=1.$
- (3) $L=2^{m-1/2} (m \ge 3)$: $N=1, \pm I, K_{m-1/2}$.
- (4) $L=2: N=1, E_1$.
- (5) $L=2^2$: $N=1, \pm I, E_2^+, E_2^-, \pm E_2^+, K_2, R_2, S_2$.

(6) $L=2^{m} (m \geq 3): N=1, \pm I, E_{m}^{+}, E_{m}^{-}, \pm E_{m}^{+}, F_{m}^{+}, F_{m}^{-}, \pm F_{m}^{+}, G_{m}^{+}, G_{m}^{-}, \pm G_{m}^{+}, H_{m}^{+}, H_{m}^{-}, \pm H_{m}^{+}, I_{m}, J_{m}^{++}, J_{m}^{--}, J_{m}^{--}, \pm J_{m}^{++}, K_{m}^{+}, K_{m}^{-}, L_{m}^{+}, L_{m}^{-}, \pm L_{m}^{+}, M_{m}^{+}, M_{m}^{-}, M_{m}^{-},$

Suppose now $L=p^m$ $(m \in N)$, where p is a prime $\neq q$. Then $H_q(L)$ is isomorphic to $SL_2(\mathbb{Z}/L\mathbb{Z})$ by the morphism $\phi:(a, b\sqrt{q}; c\sqrt{q}, d) \mapsto (a, b; cq, d)$ (mod L). All normal subgroups N of level L of $SL_2(\mathbb{Z}/L\mathbb{Z})$ are known ([1]). Since it seems that there are some errors in the Proposition 1 in § 3 of [1], we give here all N explicitly. Let M denote the unique normal subgroup of $SL_2(\mathbb{Z}/3\mathbb{Z})$ with index 3. When $L=2^m$, let P=(0, -1; 1, -1), $B_{m-1}=(1, 2^{m-1}; 0, 1), C_{m-1}=(1, 0; 2^{m-1}, 1), D_k=(d_0^{-t}, 0; 0, d_0^t)$ $(t=2^k)$ be elements of $SL_2(\mathbb{Z}/2^m\mathbb{Z})$. Now let us define some normal subgroups of level 2^m . (i) $m=1: Q_1 = \langle P \rangle$. (ii) $m \geq 2: E_m = \langle B_{m-1}C_{m-1}, C_{m-1}D_{m-3} \rangle$. (iii) $m=2: Q_2$ $= \langle P \rangle E_2$. (iv) $m \geq 3: F_m^+ = \langle D_{m-3} \rangle, F_m^- = \langle -D_{m-3} \rangle, K_m = E_m F_m^-$. (v) $m \geq 4:$ $G_m^+ = \langle X \rangle, G_m^- = \langle -X \rangle (X = B_{m-1}C_{m-1}D_{m-4})$. We use the same notations for the corresponding subgroups of $H_q(L)$.

Theorem 3. When $L = p^m$ ($m \in N$) with p a prime $\neq q$, all normal σ -subgroups N of level L of $H_q(L)$ are the following:

(1) $L = p^m (p \neq 2, 3) : N = 1, \pm I.$

(2) $L=3^{m}$ (p=3): $N=1, \pm I, M$ (m=1).

(3) L=2 (p=2, m=1): N=1, Q₁.

(4) $L=2^2$ (p=2, m=2): $N=1, \pm I, E_2, Q_2$.

(5) $L=2^{m}$ ($p=2, m \ge 3$): $N=1, \pm I, E_{m}, \pm E_{m}, F_{m}^{+}, F_{m}^{-}, \pm F_{m}^{+}, K_{m}$ and further, if $m \ge 4$, then $G_{m}^{+}, G_{m}^{-}, \pm G_{m}^{+}$.

Remark. Our notations are different from those of [1]. The following table indicates the correspondence.

Table							
our notations	М	Q_1	${m E}_m$	F_m^+	F_m^-	G_m^+	G_m^-
those of [1]	M	Q	${m E}_m$	C_m	$H_{\scriptscriptstyle m}$	D_m	${m F}_m$

In the Proposition 1 in § 3 of [1], two groups Q_2 and K_m must be added, and the group $\pm E_2$ must be omitted, because $\pm E_2$ is of level 2 but not of level 2². Also in the Main theorem of [1], the group Q_2 must be added.

(to be continued.)

References

- D. L. McQuillan: Classification of normal congruence subgroups of the modular group. Amer. J. Math., 87, 285-296 (1967).
- [2] L. A. Parson: Normal congruence subgroups of the Hecke groups $G(2^{(1/2)})$ and $G(3^{(1/2)})$. Pacific J. Math., 70, no. 2, 481-487 (1977).
- [3] T. Takagi: Classification of normal congruence subgroups of G(√q) which is a conjugate of the normalizer of Γ₀(q) (q: a prime). J. Coll. Arts and Sci., Showa Univ., vol. 18, pp. 63-99 (1987).