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1. Normal congruence subgroups of the modular group SL2(Z) was
completely classified by McQuillan [1]. As a continuation, Parson [2]
attempted the classification of normal congruence subgroups of the group
G(/-) (q=2, 3) and obtained partial results. The present author classified
all normal congruence subgroups .of the group G(/-) for any prime q ([3]).
In this note, the main results of [3] are reported.

2. In the ollowing, we denote by (a, b; c, d) a 2 2 matrix such that
the first (resp. second) row is (a b) (resp. (c d)). For a rational prime q,
the group G(/-q-)(--F) is defined by G(/-)= W-1N(Fo(q))W, where W
--(1, 0 0, /-) and N(Fo(q)) is the normalizer of Fo(q) in SLy(R). The group
F= W-Fo(q)W is a normal subgroup .of 1" with index 2, and F 1TM U SF
where S--(0, -1 1, 0). We cgll elements of F (resp. SFe) even (resp. odd).
Also a subgroup G is called even or odd according as GcF or G_F. Let
R and denote the ring of integers of the quadratic field Q(/-) and a non-
zero ideal of R respectively. Since F is a subgroup of SL2(R), the principal
congruence subgroup F(n) of F can be defined as usual. Set L--NU Nq1/.
A subgroup G of F is called a congruence subgroup if G contains F(L)
(--F (L) F F) for some L e L, and the level o G is defined to be the smallest
element L with such a property. We shall classify in 3-4 (resp. 5) even
(resp. odd) normal congruence subgroups.

3. For each L e L, set Hq(L)=Fe/F(L). For a subgroup N o Hq(L),
the level of N can be defined similarly as in case of a subgroup ot F. Denote
by a the automorphism of F defined by XS-1XS. a induces an auto-
morphism of Hq(L), which is also denoted by a. Then in order to classify
all even normal congruence subgroups, it is sufficient to classify all normal
a-subgroups of Hq(L) which are of level L.

Here we treat the case where L is a power of a prime. Suppose n.ow
that L=q with q=/=2, where s=m or m--l/2 (m e N). Since H(q/) is a
cyclic group of order q-l, there exists a unique subgroup of H(/) of
index , for each divisor , of q-1 (,=/= 1) It is denoted by ’() Let B_at(u)

and C_ be two elements of Hq(q) defined by B_=(1, q-/- 0, 1) and

C_=(1, 0; q-/-) where indicates residue class mod L. When q=3
or 5, we denote by R (resp. S)) the cyclic group of order q generated by
B_CI (resp. B_C_).

Theorem 1. When L--q’ (q=/=2, s--m, m.--1/2 (m e N)), all normal a-
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subgroups N of level L of Hq(L) are the following"
(1) L q,2. N (q (](q--1) ,=/=1).()

(2) L=q-’ (m>=2) or q (qg=3, 5, ml)" N=I, I.
(3) L q(q 3,5, m1)" N 1, I,R} +R} S} +S

Suppose now L=2, where q=2 and s=m or m--l/2 (m e N). When
s=m--1/2, K_,n denotes the group of order 2 generated by -(1+2-’)I
(m3). When s=m, there exist many normal a-subgroups. Set do=5
(mod 2) e (Z/2Z). Let B, C and D be elements of H(2) defined by

B=(1, 2J 2 0, 1), C=(1, 0;22,1), D=(d, 0; 0, d) (t=2), where
k=0, 1, ..., m. Set B=Bo, C=Co, D=Do. If t=2- (m3), then d=d;
1+2-’ (mod 2), hence D_ (1+2-’)I. If t 2- (m 5), then d 1

+2-+2-’ (mod 2) and d;= 1+2- (mod 2).
Now let us define some a-invariant normal subgroups of H (2) which

are of level 2. (i) m= 1" E, <BC>. (ii) m 2" E+ <B,C,>, E; < BC,>,
g <--B,,C,>,R <BC- E
<--E>(E B_,C_,), F-<D_} Fa=<--D_>, 6=<V}
B_,C_,D_), H <C_,D_>E, H <-C_,D_}E, I <--B_,,

EF, J EF, Ja+ EF, J;- EaF;, K=IF, K=c_,>,J+= +-=
-1Ir;, L=<L}H, L=<--L>H(L=B_C_), M=<M}H,

H;(M=B_C_), E2, MF, E_, MF. (iv)m 3" Pa <BC-’}L,
Q=<BC-’D>L, S:=<BC}E+, S;=<-BC)E+. (v) m4" N=(N}F,

+ --1N=< N>F(N=B_C_D_), O-<O>F, O=<--O}F(O B_C_.
NID_), G2,=NI, G_,=

P and Q are not abelian and contain L with index 4. S and S; are
not abelian and contain E with index 2. The other groups are all abelian.

Theorem 2. When L=2 (q=2, s=m or m--l/2 (me N)), all normal
a-subgroups N of level L of H(L) are the following"
(1) L=2’/" N does not exist.
(2) L=2m" N=I.
(3) L=2-’/(m3)" N=I,
(4) L=2" N=I, E,.
(5) L=2" N=I, I, E, El, E, K, R, S.
( 6 ) L 2 (m 3)" N 1, I, E, E;, E, F, F;, F, G, G;, G,

J- +J+, K, K, L;, L;, +L, M, M;,H, H, H;, I, J+, J J+,
M, E_,,+ E=, and further, if m=3, then P, Q, S, S;, or if m>4,= then
N, N, N, 0, 0, 0, G_,, G_,.

Suppose now L=p (m e N), where p is a prime Cq. Then Hq(L) is

isomorphic to SL (Z/LZ) by the morphism" (a, bJ c]V, d)(a, b cq, d)
(mod L). All normal subgroups N of level L of SL (Z/LZ) are known
([1]). Since it seems that there are some errors in the Proposition 1 in 3
of [1], we give here all N explicitly. Let M denote the unique normal sub-
group of SL (Z/3Z) with index 3. When L=2, let P= (0, 1 1, 1),
B_,=(1, 2-’ ;0, 1), C_, (1, 0 2-’, 1),D (d; ,0 ;0, dg) (t 2) be elements
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of SL (Z/2Z). Now let us define some normal subgroups o level 2. (i)
m=l" Q1--(P}. (ii) m>_2" E=(B_IC_, C_D_3}. (iii) m:2" Q2
=(P}E2. (iv) m>__3" F+=(D_3}, F=(--D_3}, K=EF. (v)
G+=(X}, G=(-X} (X=B_C_ID_). We use the same notations :for
the corresponding subgroups of H(L).

Theorem 3. When L=p (m e N) with p a prime =/=q, all normal a-sub-
groups N of level L of H(L) are the following"
(1) L:p (p:/=2,3)" N=I, +_I.
(2) L---3 (p=3)" N=I, +_I, M (m-----l).
(3) L=2 (p=2, m=l)" N--l, Q.
(4) L--22 (p-2, m=2)" N=I, +__I, E2, Q2.
(5) L=2 (p-2, m3)" N=-I, +_I, E, +_E, F+, F, +_F+, K and
further, if m >=4, then G+, G, +_ G+.

Remark. Our notations are different from those of [1]. The following
table indicates the correspondence.

Table

our notations

those of [1]

M Q E F+ F G+ G

M Q E C H D F
In the Proposition 1 in 3 o [1], two groups Q and K must be added,
and the group +E must be omitted, because +_E is of level 2 but not of
level 2. Also in the Main theorem of [1], the group Q must be added.

(to be continued.)
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