44. On a Weak Generalization of the Fundamental Theorem of the Theory of Curves or Hypersurfaces¹

By Kazushige UEN0 Tokyo University of Fisheries

(Communicated by Kôsaku Yosida, m. j. a., May 12, 1988)

0. Introduction. Let us consider the Euclidean space \mathbb{R}^3 and a surface with an analytic representation ${}^t(f_1, f_2, f_3) = f(x_1, x_2)$. Then, for this, we have first fundamental quantities $K_{ij}(j_x^1(f)) = p_i \cdot p_j \ (1 \le i, j \le 2)$ and second fundamental quantities $L_{ij}(j_x^2(f)) = |p_{ij}, p_1, p_2|/\sqrt{K_{11}K_{22}-(K_{12})^2} \ (1 \le i, j \le 2)$ where the dot means the canonical inner product in \mathbb{R}^3 and $p_i = {}^t(\partial f_1/\partial x_i, \partial f_2/\partial x_i, \partial f_3/\partial x_i), p_{ij} = {}^t(\partial^2 f_1/\partial x_i \partial x_j, \partial^2 f_2/\partial x_i \partial x_j, \partial^2 f_3/\partial x_i \partial x_j)$. K_{ij} (resp. L_{ij}) is considered as a function on the 1-jet space $J^1(\mathbb{R}^2, \mathbb{R}^3)$ (resp. the 2-jet space $J^2(\mathbb{R}^2, \mathbb{R}^3)$). For the above particular f, if we set $\lambda_{ij}(x) = K_{ij}(j_x^1(f))$ and $\eta_{ij}(x) = L_{ij}(j_x^2(f))$, then we get a system of differential equations $P: K_{ij} - \lambda_{ij} = 0$ $(1 \le i, j \le 2), L_{ij} - \eta_{ij} = 0 \ (1 \le i, j \le 2)$.

Let Γ be the pseudogroup generated by local isometries on the Euclidean space \mathbb{R}^3 . Then the fundamental theorem of the theory of surfaces means that any solution s of P is written by $s = \sigma \circ f$ for some $\sigma \in \Gamma$.

A similar fact holds for curves in \mathbb{R}^3 with an analytic representation ${}^t(f_1, f_2, f_3) = f(t)$ using the torsion and the curvature of f.

The purpose of this note is to generalize the above stated facts to any local immersion $f: \mathbb{R}^n \to \mathbb{R}^m$ (n < m) and any pseudogroup Γ of finite type on \mathbb{R}^m in a generic situation for f and Γ . The smoothness is always assumed to be of class C^{*} .

1. Statement of the results. Let $J^k(n, m)$ be the space of k-jets of local maps of \mathbb{R}^n to \mathbb{R}^m . If n < m, then $\tilde{J}^k(n, m)$ means the space of k-jets of local immersions and if $n \ge m$, $\tilde{J}^k(n, m)$ means the space of k-jets of local submersions. In both cases, $\tilde{J}^k(n, m)$ is open and dense in $J^k(n, m)$.

Let Γ be a pseudogroup on \mathbb{R}^m . Then Γ is lifted to a pseudogroup $\Gamma_n^{(k)}$ on $\tilde{J}^k(n, m)$ by $\phi^{(k)}(j_x^k(f)) = j_x^k(\phi \circ f)$.

A vector field X on \mathbb{R}^m is called a Γ -vector field if the local 1-parameter group of local transformations on \mathbb{R}^m generated by X is contained in Γ . Let \mathcal{L} denote the sheaf on \mathbb{R}^m of germs of Γ -vector fields. Then \mathcal{L} is also lifted to a sheaf $\mathcal{L}_n^{(k)}$ on $\tilde{J}^k(n, m)$. $(\mathcal{L}_n^{(k)})_p$ (resp. \mathcal{L}_z) means the stalk of $\mathcal{L}_n^{(k)}$ (resp. \mathcal{L}) on $p \in \tilde{J}^k(n, m)$ (resp. $z \in \mathbb{R}^m$).

Definition 1.1. A function ϕ on a neighbourhood of a point $p \in \tilde{J}^k(n, m)$ is called a differential invariant of Γ at p if $X\phi = 0$ for any $X \in (\mathcal{L}_n^{(k)})_p$.

Let $\{\phi_1, \dots, \phi_r\}$ be a maximal family of differential invariants of Γ at $j_x^k(f)$ such that the differentials $d\phi_1, \dots, d\phi_r$ are linearly independent at $j_x^k(f)$

Dedicated to Professor Kenichi SHIRAIWA on his 60th birthday.

where $j_x^k(f) \in \tilde{J}^k(n, m)$.

Definition 1.2. Γ is said to be k-regular at (x, f) if the family $\{\phi_1, \dots, \phi_r\}$ is also a maximal family of differential invariants of Γ at any point $p \in U$ for some neighbourhood U of $j_x^k(f)$. Then the family is called a fundamental system of differential invariants of Γ at $j_x^k(f)$. Γ is said to be regular at (x, f) if it is k-regular at (x, f) for any integer $k \ge 0$.

Assume that Γ is k-regular at (x_0, f) and let $\{Y_1^k, \dots, Y_{m_k}^k\}$ be a fundamental system of differential invariants of Γ at $j_{x_0}^k(f)$. We set $\lambda_i^k(x) = Y_i^k(j_x^k(f))$. Then we have a system of differential equations $P^k: Y_i^k = \lambda_i^k$ $(i=1, \dots, m_k)$ around $j_{x_0}^k(f)$. P^k is called the Γ -orbit system at (x_0, f) .

Definition 1.3. A system of differential equations Φ^i given around $j_{x_0}^i(f)$ is said to be Γ -automorphic if (1) f belongs to the solution space $S(\Phi^i)$ of Φ^i , (2) for any $\sigma \in \Gamma$ which is near to the identity and for any $s \in S(\Phi^i)$, we have $\sigma \circ s \in S(\Phi^i)$ and (3) for any $s \in S(\Phi^i)$ near to f, there exists $\sigma \in \Gamma$ such that $s = \sigma \circ f$.

Then our main theorem is

Theorem 1.1. Let Γ be a pseudogroup on \mathbb{R}^m and assume that dim $\mathcal{L}_z < \infty$ at $z \in \mathbb{R}^m$ and that Γ is regular at (x, f) where f(x)=z. Then for a sufficiently large integer k, \mathbb{P}^k is Γ -automorphic.

2. Proof. Let π_k^{k+h} denote the natural projection of $\tilde{J}^{k+h}(n,m)$ onto $\tilde{J}^k(n,m)$ and let α^k (resp. β^k) denote the natural projection of $\tilde{J}^k(n,m)$ onto R^n (resp. R^m). Let U^k be a neighbourhood of $j_x^k(f) \in \tilde{J}^k(n,m)$ and let $\{x_1, \dots, x_n\}$ (resp. $\{u_1, \dots, u_m\}$) be a coordinate system on $\alpha^k(U^k)$ (resp. $\beta^k(U^k)$). Then we get a coordinate system $\{x_i(1 \le i \le n), u_j(1 \le j \le m), p_{j_1 \dots j_k}^i)$ ($1 \le \lambda \le m, 1 \le j_1, \dots, j_h \le n, 1 \le h \le k+1$) on $U^{k+1} = (\pi_k^{k+1})^{-1}(U^k)$ associated with $\{x_1, \dots, x_n, u_1, \dots, u_m\}$ introduced by $p_{j_1 \dots j_h}^j(j_x^{k+1}(f)) = (\partial^k(u_k(f))/\partial x_{j_1} \cdots \partial x_{j_h})(x)$. For a system of differential equations Φ^k defined on U^k and given by a generator $\{f_1, \dots, f_r\}$, $p(\Phi^k)$ means the system of differential equations on U^{k+1} generated by $\{f_i, \partial_x^* f_i; i, l=1, \dots, r \text{ and } j=1, \dots, n\}$ where $\partial_x^* f_i = \partial f_i/\partial x_i + \sum_{i=1}^m p_i^2(\partial f_i/\partial u_i) + \dots + \sum_{i=1}^m \sum_{j_1 \dots j_k=1}^n p_{j_{j_1 \dots j_k}}^j(\partial f_i/\partial p_{j_1 \dots j_k})$.

Let A or B a system of differential equations defined on \mathcal{U}^k and given by a generator $\{f_1, \dots, f_r\}$ or $\{g_1, \dots, g_s\}$, respectively. We denote by $A \supset B$ if the ideal i(A) generated by $\{f_1, \dots, f_r\}$ in the ring of functions on \mathcal{U}^k contains the ideal i(B) generated by $\{g_1, \dots, g_s\}$. Denote by I(A) the set of integral points of A.

Theorem 2.1 (Kuranishi [1], p. 142). Let Φ^{l} $(l \ge l_0)$ be a system of differential equations on a neighbourhood \mathbb{U}^{l} of $p^{l} = j_{x_0}^{l}(f)$ and assume the following:

(i) f is a solution of Φ^l for any $l \ge l_0$.

(ii) $\Phi^{l+1} \supset p(\Phi^l)$ on a neighbourhood of $j_{x_0}^l(f)$ for any $l \ge l_0$.

(iii) For a suitable open neighbourhood U of p^{ι_0} , the triple $(I\Phi^{\iota_0} \cap U, \alpha^{\iota_0}(U), \alpha^{\iota_0})$ is a fibred manifold.

(iv) The triple $(I\Phi^{l+1} \cap V, I\Phi^{l} \cap V', \pi_{l}^{l+1})$ is a fibred manifold for a suitable open neighbourhood V (resp. V') of p^{l+1} (resp. p^{l}) for any $l \ge l_0$.

Then there exists an integer l_1 such that Φ^{l+1} and $p(\Phi^l)$ are equal in a neighbourhood of p^{l+1} and such that Φ^l is involutive at p^l for any $l \ge l_1$.

Let Γ be a pseudogroup on \mathbb{R}^m which is regular at (x_0, f) . In the following proposition, we need not assume that dim $\mathcal{L}_z < \infty$ where $z = f(x_0)$.

Proposition 2.2. There exists an integer l_1 such that $P^{l+1} = p(P^l)$ on a neighbourhood of $j_{x_0}^{l+1}(f)$ for any $l \ge l_1$.

For the proof, we have only to check the conditions (i)-(iv) in Theorem 2.1. For details, refer to [2, p. 468].

Again we assume that dim $\mathcal{L}_z < \infty$ where $z = f(x_0)$. For the Γ -orbit system P^k at (x_0, f) , we set $S^l = \{j_x^l(s) ; s \in \mathcal{S}(P^k), x \in the \ domain \ of \ s\}.$

Lemma 2.3. There exists an integer N such that, for any $k \ge N$, we can find a neighbourhood U^{k+1} (resp. U^k) of $j_{x_0}^{k+1}(f)$ (resp. $j_{x_0}^k(f)$) such that $S^{k+1} \cap U^{k+1}$ is diffeomorphic to $S^k \cap U^k$ by the projection π_k^{k+1} .

Proof. We set $f(k) = \{j_k^k(f) ; x \in the \ domain \ of \ f\}$. Since Γ is regular at (x_0, f) , by Frobenius theorem for some neighbourhood \mathcal{U}^k of $j_{x_0}^k(f)$ we can get the orbit \mathcal{J}_p of $\mathcal{L}_n^{(k)}$ through $p \in \mathcal{U}^k$ in \mathcal{U}^k . Then we have $S^k \cap \mathcal{U}^k$ $= \mathcal{J}^k(f, \mathcal{U}^k) \equiv \bigcup_{p \in f(k) \cap \mathcal{U}^k} \mathcal{J}_p$. Since dim $\mathcal{L}_s < \infty$, there exists an integer Nsuch that, for any integer $l \ge N$, $\mathcal{J}_{p^{l+1}}$ is a covering space of \mathcal{J}_{p^l} by π_l^{l+1} where $p^l = j_x^l(f)$. Furthermore for a neighbourhood $\widetilde{\mathcal{U}}^{k+1}$ (resp. $\widetilde{\mathcal{U}}^k$) of p^{k+1} (resp. p^k), $f(k+1) \cap \widetilde{\mathcal{U}}^{k+1}$ is diffeomorphic to $f(k) \cap \widetilde{\mathcal{U}}^k$ by π_k^{k+1} . Then, for a suitable neighbourhood \mathcal{U}^{k+1} (resp. \mathcal{U}^k) of p^{k+1} (resp. p^k), $\mathcal{J}^{k+1}(f, \mathcal{U}^{k+1})$ is diffeomorphic to $\mathcal{J}^k(f, \mathcal{U}^k)$ and therefore $S^{k+1} \cap \mathcal{U}^{k+1}$ is diffeomorphic to $S^k \cap \mathcal{U}^k$.

Lemma 2.4. For a sufficiently large integer k, if $j_{x_0}^k(s) = j_{x_0}^k(s')$ for two solutions s and $s': V \to \mathbb{R}^m$ of \mathbb{P}^k where V is a neighbourhood of x_0 , then s=s' on a neighbourhood $\tilde{V} \subset V$ of $x_0 \in \mathbb{R}^n$.

Proof. By Lemma 2.3, there exists an integer N such that, for any $k \ge N$, $S^{k+1} \cap \mathcal{U}^{k+1}$ is diffeomorphic to $S^k \cap \mathcal{U}^k$ by π_k^{k+1} . On the other hand by Proposition 2.2, there exists an integer l_1 such that, if $k \ge l_1$, then $S(P^{k+1}) = S(p(P^k))$ in a neighbourhood $\tilde{\mathcal{U}}^{k+1} \subset (\pi_k^{k+1})^{-1}(\mathcal{U}^k)$ of $j_{x_0}^{k+1}(f)$. Therefore, for any solution $s \in S(P^k) | \tilde{\mathcal{U}}^{k+1} = \{g \in S(P^k) ; g(k+1) \subset \tilde{\mathcal{U}}^{k+1}\}$ where $k = \max(N, l_1)$ and $\tilde{\mathcal{U}}^{k+1} = \mathcal{U}^{k+1} \cap \tilde{\mathcal{U}}^{k+1}$, we have $j_{x_0}^{k+1}(s) \in S^{k+1} \cap \tilde{\mathcal{U}}^{k+1}$ and there exist functions $F_{j_1...,j_{k+1}}^{2}(1 \le \lambda \le m, 1 \le j_1, \cdots, j_{k+1} \le n)$] on $S^k \cap \pi_k^{k+1}(\tilde{\mathcal{U}}^{k+1})$ such that $p_{j_1...,j_{k+1}}^{\lambda}(j_x^{k+1}(s)) = F_{j_1...,j_{k+1}}^{\lambda}(j_x^{k}(s))$ for $s \in S(P^k) | \tilde{\mathcal{U}}^{k+1}$. Inductively $p_{j_1...,j_{k+1}}^{\lambda}(j_{x_0}^{k+1}(s)) = F_{j_{x_0}}^{\lambda}(s')$, then $j_{x_0}^{k}(s)$. If s and s' are in $S(P^k) | \tilde{\mathcal{U}}^{k+1}$ and $j_{x_0}^{k}(s) = j_{x_0}^{\lambda}(s')$, then $j_{x_0}^{\ell}(s')$ for $l \ge k$. Therefore by the analyticity, we get s = s' on a neighbourhood of x_0 .

Now we shall complete the proof of Theorem 1.1. Take any $s \in S(P^k)$ and assume that s is near to f. Then for a small neighbourhood \mathcal{U}^k of $j_x^k(f)$, we have $j_x^k(s) \in S^k \cap \mathcal{U}^k$. Let us show that $S^k \cap \mathcal{U}^k = I(P^k) \cap \mathcal{U}^k$. Since Γ is regular at (x_0, f) , $I(P^k) \cap \mathcal{U}^k$ is a regular submanifold of $\tilde{J}^k(n, m)$ and $\dim I(P^k) \cap \mathcal{U}^k = \dim \tilde{J}^k(n, m) - m_k + n$ because $\{Y_1^k, \dots, Y_{m_k}^k\}$ is a fundamental system of differential invariants of Γ at $j_{x_0}^k(f)$ and if Y_j^k depends only on

No. 5]

 $\{x_1, \dots, x_n\}$, then the equality $Y_j^k = \lambda_j^k$ holds identically. Since f is a solution of P^k , we get $\mathcal{J}^k(f, \mathcal{U}^k) \subset I(P^k)$. On the other hand, for each $p \in f(k) \cap \mathcal{U}^k$, the orbit \mathcal{J}_p is transversal to f(k). Therefore

 $\dim \mathcal{J}^k(f, \mathcal{U}^k) = n + \dim J^k(n, m) - m_k$

and we get dim $\mathcal{J}^k(f, \mathcal{U}^k) = \dim I(P^k) \cap \mathcal{U}^k$. Since $S^k \cap \mathcal{U}^k \supset \mathcal{J}^k(f, \mathcal{U}^k)$ and $S^k \subset I(P^k)$, we get $S^k \cap \mathcal{U}^k = I(P^k) \cap \mathcal{U}^k$ by taking a smaller neighbourhood if necessary. Therefore $S^k \cap \mathcal{U}^k = \mathcal{J}^k(f, \mathcal{U}^k)$. This means that $j_x^k(s) = j_x^k(\sigma \circ f)$ for some $\sigma \in \Gamma$. By Lemma 2.3, $s = \sigma \circ f$ on a neighbourhood of x.

Conversely if $\sigma \in \Gamma$ which is near to the identity, then clearly $\sigma \circ s \in \mathcal{S}(P^k)$ for any $s \in \mathcal{S}(P^k)$. This completes the proof of Theorem 1.1.

References

- M. Kuranishi: Lectures on exterior differential systems. Tata Inst. Fund. Res., Bombay (1962).
- [2] K. Ueno: Existence and equivalence theorems of automorphic systems. Publ. RIMS, Kyoto Univ., 11, 461-482 (1976).