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In this note we introduce a new method of constructing irreducible
unitary representations (= IURs) of a classical Lie superalgebra of type A.
Then we classify all the irreducible unitary representations of real forms
of Lie superalgebra A(1, 0). In the previous papers [2], [3], we define uni-
tary representations of Lie superalgebras and introduce a general method
of constructing irreducible representations of any simple Lie superalgebras.
Moreover we classify and construct all the irreducible (unitary) representa-
tions of classical Lie superalgebra p(1, 2). Further we gave similar re-
sults for real forms of the Lie superalgebra (2, 1) (= A(1, 0)) exhaustively
for the case where the even parts of representations are irreducible. There
remains to study the case of non irreducible even parts.

-1 +11. New method. We have a Z-gradation gc gc gc(R)gc with
the even part, of Lie superalgebras gc=A(n, 0) compatible with.the
gradation g=g0g of a real form of go. A new method consists of the
following. (i) First we study the weight distributions for IURs (, V), and
see in particular that any IUR is a highest (or lowest) weight representa-
tion because of its unitarity (see Proposition 1). (ii) Next we consider induced

c(R)c and L(/) is an irreduciblego-module V(A) IndcL(A). Here p +1,
highest weight representation of go,0 with highest weight A considered as
p-module by putting $1-action as trivial. Any irreducible representation
V(A) of gc with highest weight A is a quotient of V(A). (iii) Therefore we
should determine the maximal submodule I(/) of V(A) to get V(A)-V(A)/
I(A).

2. Preliminaries. Denote by M(p, q;K) the set of all matrices of
type p q with entries in a field K, and by gc the complex algebra !:(n, 1)
--A(n-1, 0). Here (n, 1) is realized in M(nq-1, n-q-1 C) as in [4, p. 29].
Let 5c be a Cartan subalgebra of gc consisting of diagonal matrices, then C
1<i_, Ei,+nEn+ 1,,z +1 is in c, where E,s is an element of M(n/ 1, n q- 1 C)

with components 1 at (i, ]) and 0 elsewhere. Real forms g of gc--(n, 1)
are isomorphic, up to transition to their duals, to one of the following" (a)
l:(n, 1; R); (b) u(n, 1; p, 1) ([n+l/2]in). Here l(n, 1; R)--(n, 1)
M(nq-1, nq-1 R), and u(n, 1 p, 1)= u(n, 1 p, 1)0qu(n, 1 p, 1) with

u(n, 1 p, 1)8={X e (n, 1) JpXq-(-1)8.tXJp=O} for s=O, 1, where tX is
the transposed matrix of X and J;- diag (1, ., 1, 1, ., 1,) with
p-times 1 and (n-p)-times -1.
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3. Weight distributions. For g (n, 1 R), there exist no IURs
exeept the trivial one. So we put =u(n, 1 I0, 1). From the positive-
definiteness condition for unitrity, we get

Proposition 1. Let (zr, V) be an IUR of a real Lie superalgebra
u(n, 1;/9, 1). Then there are (e}, e= +__1, satisfying

(1) =--+ , and
( 2 ) any weight p e of V satisfies

p(H)O for l<=k<=n with H=E,+En/,/ e c.
In particular, any IUR of g must be a highest or lowest weight module.
4. Z-gradation. Let gc=:(n, 1) and C’= (1-n)-C e c, then gc is

-1 +1decomposed into C’-eigenspaces as gc gc (R)qcgc for which the even part
-/ Thus gc becomes a Z-graded algebra.gc,0 g and the odd part gc,=cc

The universal enveloping algebra cU(g) is decomposed into C’-eigenspaces
as cU(g) 0n cU(-- k), where the C’-eigenvalue of cU(- k) is k.

5. Induced highest weight modules F(A). Take
gb of gc. For A e )c*, denote by L(A) (resp. V(A)) the irreducible highest
weight representation of g (resp. gc) with highest weight A. We define
g-action on L(A) by =0 ( e gx, V e L(A)), then L(A) becomes a p-module.
Now define a gc-module V(A) as in [5] by V(A)--Indc L(A). Then V(A)
-cU(g)(R)cL(A) is decomposed into C’-eigenspaces as V(A)=0_<z V_,
where V_ cU(- k)L(A) has eigenvalue A(C’)- k. And we get the follow-
ing criterion of irreducibility, which is first obtained by Kac [5] for L(A)
with dim L(:I) c.

Proposition 2. V(A) is irreducible if and only if
I-I l_/c<:n {A(H) +n- k} :/: 0.

6. Method of constructing V(A) from F(A). Step 1" First we de-
compose each V_=cU(-k)L(A) into irreducibles of g0, or determine its
subquotient structure. Step 2" Check the g-action on each component,
that is, decompose gV, into irreducible g0-modules for each g0-irreducible
component V, of V_. (This decomposition is independent of the value

+1A(C).) Step 3" gc V, depends on the value of A(C). So we calculate its
structure case by case. Step 4" Finally, from Steps 2 and 3, we get the
maximal submodule I(A) and obtain V(A)= V(A)/I(A).

7. Classification of IURs for g=u(2, 1; 2, 1). Let gc=l:(2, 1), and
a, fl be simple roots of (qc, )c) given as a(H)=2, a(C)=0;/3(H)=--1,/3(C)
=--1. Here {H=E,-E,z, C} is a basis of )c. Another positive root is
’=a+/3, and we put =/3+’. Then we get

Theorem 3. (1) Any irreducible unitary representation V of Lie
superalgebra u(2, 1; 2, 1) is a highest or lowest weight representation. If
V is a highest weight IUR, then V is isomorphic to one of the representa-
tions V(A) for which A(H) is a non-negative integer and A(C) is a real
number with A(C) A(H) 2 or A(H) <=A(C).

(2) As go-modules, the above V() is decomposed as fvllows"
( ) V(//)=L(/) for /(C)--/(H)=0,
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(ii) V(A)=L(A)L(A-) for A(C)=A(H)>_I,
(iii) V(d)=L(A)L(A--) for A(C)--A(H)-2,
(iv) V(A)=L(A)(R)L(A--)(R)L(A--) for A(H)=0 and A(C)-2, OA(C),
( v ) V(A)=L(A)(R)L(A--fl)L(A--’)L(A--) otherwise.
Here the even part of V(A) consists of L(A) and L(A--6).

8. Classification of IURs for g=u(2, 1; 1, 1). Let H, C, a, fl, " and
be as above.

Theorem 4. (1) Any irreducible unitary representation V of Lie
superalgebra =u(2, 1 1, 1) is a highest or lowest weight representation.
If V is a highest weight IUR, then V is isomorphic to one of the represen-
tations V(A) for which A(H) is a non-positive integer and A(C) is a real
number with A(H)<:A(C)<=-A(H)-2 or A(H)=A(C)=O.

(2) As a go-module, the above V(A) is decomposed into go-irreducible
components as follows"
( ) V(A)-L(A) for A(C)--A(H)=O,
( ii ) V(A) L(A)L(A ) for A(C) A(H) <= 1,
(iii) V(A)--L(A)L(A--) for A(C)---A(H)--2>=O,
(iv) V(A)=L(A)(R)L(A-)(R)L(A-’)L(A-) otherwise.

Thus we classify all the IURs of all the real forms o the Lie super-
algebra ;(2, 1).

9. Realization of IURs. Realizations of the above IURs are given
in [1] and [3]. Here we pick up the case (iv) in Theorem 4 as an example.
In this case g0 - u(1, 1), A(H) is a positive integer >__2 and m A(C) is
a real number with g<m<-2. Let v e L(A) be a unit highest vector
of V(A), and (v}e be a standard orthonormal basis of L(A) given induc-
tively by

/(k+ g 1)k. v+--E,,v or k e N-- {1, 2, 3, }.
Next let {v}e be a standard orthonormal basis of L(A--O) determined by

/(+m)(g-m 2). v 2. E,,E,v for k e N.
We define standard orthonormal bases {v}e and {v}e of L(A--fl) and
L(A-- 7) respectively by

0__/(g--1)(+m).v=/(/g+k--2.E,v /k--1 E,,vx_,),
/(g --1)(g m 2) .v=/-(/k .E,.v+-/+k--l.E,,v).

We write the operator { e ,,c in the form o blockwise matrix o oper-
ators (D,),=0,,r,, where D," L(A--k)-+L(A--]). Then 5=(D,) is of the
following form respectively depending on { e or e"0 0 0 0

( Or"D’’--’’’-- 0 0 0 0
0 0 0 0 0

And the action o c, is respectively given as ollows"
For "

0 0

0 0"
0

D0, & D0,r E,v=--C_a_v_, E,,v=C+b,v,
D, & D, E,v=-C+b_v-C_a_v_,
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For :

where a=/k, =/g+k-1 and +/-={(g-1)(m+l)}l/2{2(-1)}-1/
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