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A Mathematical Theory of Randomized Computation. I
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(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1988)

1. Introduction. Randomized algorithms, or probabilistic algori-
thms, are the extended algorithms which incorporate random input data
and random choices. They have recently been recognized as an important
are o information science and undergone intensive studies. Whereas
mathematical theory oi randomized computation is indispensable to guar-
antee the reliability o stochastic software, there has been no theory com-
parable to Scott’s theory [3, 4] 2or deterministic computation. The present
series o2 communications outlines a new rndomized domain theory [5]
which, while naturally extending Scott’s deterministic domain theory,
readily provides a denotational semantics .or class o high level proba-
bilistic programming lnguages and is also applicable to machine learning
and algorithmic information theory.

2. The postulates for the probability theory. There have been
pointed out many pathological phenomena that arise within the ramework
o the axiomatic theory of probability. In order to avoid these defects,
we postulate the ollowing Axioms 1 nd 2 or the probability theory. The
space/2 in measurable space (9, ) is called basic space.

Axiom 1. Every basic space is compact, Hausdorff and second count-
able, if it is endowed with a topology. Every basic space has power ,
if it is not endowed with any topology.

Axiom 2. Every probability space is separable and perfect.
Given a measurable space (tg, ), we shall call

subprobability measure if it stisfies

3. The Scott topology. The essence oi Scott’s theory is the ide
finite approximation coupled with the Kleene first recursion theorem. A
computation is thought as a sequence or a directed set of increasingly re-
fined approximations whose supremum is the desired result. To ormulate
the idea, we introduce "undefined value" _[_ and "approximation ordering"_

in a domain of computation C and think of the domain as a poser
D=(D, ), where D "=C{_[_}. The intuitive meaning o

_
is s ollows"

Every x in C is a definite value "well defined" compared with the undefined
value _L. So _[_ is considered to "approximate x with respect to the degree
of definition". In other words, "x is better defined than _]_", and written
_[__x. For x, y e C, i2 x:y then "x and y do not approximate each other".
Technically we define it as 2ollows

(1) A poser D=(D, _) is a conditionally complete poset (ccp or short)
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i (i) ]_[_ e D, Vx e D [_[__x] (_[_ is called the bottom) and (ii)every non-
empty upwards directed subset X of D which is bounded 2rom above has
supremum in D.

To have well-behaved "limit", we assume that every element in D is
itsel the supremum in the ordering

_
and then we say that an element y

s.t. y_x is an approximation o x if, or every directed set Z s.t. x-sup Z,
there exists z in Z s.t. y_z"

(2) Let D=(D,)be a ccp. For Vx, yeD, x is wy below y (in
symbols, x <<y) if or every upwards directed subset Z o D possessing the
supremum z (in symbols, Z zcD), [y_z@]Zo e Z [xz0]]. x e D is com-
pact iff x x.

In a ccp D (D, ), we shall write $ x {y e D YX}.
The set o all compact elements in a ccp D is denoted by K(D).
(3) A ccp D=(D, ) is algebraic i (i) x K(D) is upwards directed

and (ii) x=sup {YlY e $ x K(D)}, or Vx e D.
We call the topology induced by

_
the Scott topology"

(4) Let D--(D, ) be ccp. The Scott topology on D is defined s
follows" (C)cD is open if (i) x e 5) and x_yy e _) nd (ii) VX xcD nd
xeOXO:.

(5) A set E in a ccp D=(D, _) is a subbasis of D if for VxeD,
x=sup{eleeE and ex}. A subbasis ED is a basis of DifsupFeE
for V finite FcE.

Now we consider function domains. Let f be the function recursively
defined by f(x) "= F(f, x). We think of f as a fixed point of the "Scott con-
tinuous" functional F, then the computation of f is given as the sequence
{g} of increasingly refined approximate functions, whose supremum
sup {g} is f" go_g... -gn___g/ ", where go is the totally undefined
function 2x._[_ and g (x) F(g, x) F(go, x) for Vn_ 1. So we define the
products and exponents of ccp’s as follows"

(6) Given ccp’s D=(D, ) and D’=(D’, ’). (i) The product
is the cartesian product of D and D’ partially ordered by (x, x’}(y,
iff x_y and x’_ y’. (ii) The function space [D--D’] is the set of all Scott
continuous functions T" D--D’ partially ordered TS in [D-->D’] iff Vx e D
[TxSx].

Then the ollowing relations are esily deduced rom (1)-(6)"
(7) (i) If D and D’ are algebraic ccp’s, then DD’ and [D--D’] are

algebraic ccp’s. (ii) If ccp’s D and D’ have effectively given countable
bases, then DD’ and [D--D’] have effectively given countable bases.

4. Randomized algorithms. We illustrate the semantics o random-
ized programs with the 2ollowing randomized McCarthy formalism"

(8) Let X be the domain o computation and B a class of base unc-
tions on X. The class C(B) o recursiv.ely defined unctions on X is the
smallest class o unctions containing B and closed under the ormation
o unctio. compositions, conditional expressions, recursive definitions,
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2-bstractions and label notations.
In a randomized algorithm (or program) F e C(B) the state vector com-

posed 02 the program variables and random oracles is thought as random
(vector) variable x" (t2, ,/)--(X, _), where (t2, ,/) and (X, _) are an a
priori given sample space and a value space, respectively. Let L(X)and
M(X) be the spaces o partial measurable unctions rom (X, _)to itsel
and subprobability measures on (X, _), respectively. Then a sample execu-
tion of the program F consists o.f picking up sample point w e t2, deter-
mining the initial value o.f the state vector x, F executes deterministically,
changing the contents o the state vector. Upon exit, the effect of the
execution may be described by a partial measurable unction F mapping x
to the final state vector F x. So, as the first meaning m" C(B)--L(X),
we have mlF "=F. F also induces the operator TF mapping an input
probability measure zx .=/ox- to the output subprobbility measure

/x F-1 by TF(v) "=v F -1 (V, e M(X)). So we have m2F Tr as the sec-
ond meaning m2" ’(B)-Hom (M(X), M(X)). Thus the semantics m and m2
are defined inductively as ollows

( ) I FeB, then mF "--F and mF "=T.
( ii ) I F, G e C(B) and H G F, then mH mG mF] and

m2H "=m.[G m2r.
(iii) Let P, F, G e C(B) and H(x) = if P(x) then F(x) else G(x), where

P is a propositional function symbol. Then
ml[H x.if ml[P. (x) then mIF] (x) else m[G] (x).

Define Zp eM(X)forP by [p(E) "=[ ({xlm[P](x)}E) for VE e_ and
let the projection e be e(/) "=/ fr V/ e M(X). Then

m2[H "=m2[H ep +m2[Go e_,
where P denotes the negation of P.

(iv) I F is defined by the recursive definition F "=r(F). Then F de-
notes the least fixed point m[r(F) "= Fix (r) f F=r(F) and m[r(F) "= T,
where T(/) "=/ Fix (r) - ar V/ e M(X). (The fixed pint theorem is dis-

cussed later.) Thus we may think f a randomized program as a positive

linear perater mapping an input probability measure t the utput sub-
probability measure.
Nw it is well known ([1] and [2]) that every space V= V(X) c all

bounded measures on a measurable space (X, _) with a campact Hausdarff
space X, endowed with the llwing natural vector lattice structure and
ttal variation norm, is isometric and rder isamerphic te an AL-space and
conversely

Fr V[, v e V, ([/v)(A) "=/(A)+,(A) and (/)(A) ":/(A) er V e R,
VA e _,/_v iff [(A)_v(A) for VA e _,

(gk/,)(A) sup {g(B) +,(A B), Bc A}, and

(/A,)(A) "=inf {z(B)+,(A--B), BcA} for VA e c, and

]Z]I "=I/I(X), the total variation norm.
Clearly the space of subprobability measures, or a basic randomized



118 S. YAMADA [Vol. 64 (A),

domain, is the positive unit hemisphere ((V) "=U V/, i.e., the intersec-
tion the unit ball U "={x e V] lxlll} and the positive cone V "={x e V
x_0} the AL-space V of bunded measures.. Banach lattices. We recall the relevant definitions. Let R denote

the real number field. (i) An ordered vector space (OVS) is vector space
V ver R endowed with partial erder relation satis2ying (a) xy
x+zy+z er Vx, y, z e V, and (b) xy2x_y 2er Vx, y e V and V2 e R
s.t. _0. (ii) A vector lattice (VL) is an OVS V in which x/y "=sup {x, y}
and x/y "=in{x,y} exist in V, r Vx, yeV. (iii) Let Vbe VL. A
unctin VR is called a norm e V i (a) Ixll_0 and
r Vx e V, (b) IIx/yll<_llx I+ lyll r vx, y e V, and (c) xll=ll’llxll or
v2 e R and Vx e V. A norm on V is called a lattice-norm (or, norm)
on V if (d) IIx I--I] Ix[ II (vx e V) and (e) x<_y Ixll<_ lY]I (Vx, y e V+). The
pair (V, l) is called a normed VL if is a lattice-nerm on V. We
shall also denote a nermed VL (V, II) by V. (iv) A normed VL (V,
is called a Banach lattice ( BL, fer shert) if (V, I) is complete under
the metric topology generated by the metric p(x, y) "=llx--Y I. (v) An AL-
space is a BL V s.t. IIx+y t=llxl]+ lyll for vx, y e V/. (vi) An AM-space is
a BL V s.t. Ix/yIl=max (Ixl], Ily ) or vx, y e V/. (vii) An AM-space with
unit is an AM-space V in which the closed unit ball U "={x e V IIIx I1}
cntains a largest element e (in the rder tplgy) s.t. lie]l=1, e is called
the unit V.

We note that the order tplogy and the norm topology are independ-
ent on BL’s. For the order topology o a Banach lattice"

(9) Let V be a BL. Then (i) V is a-order complete if every non-empty
countable subset of V which is bounded rom above has a supremum. (ii)
V is order complete if every non-empty subset o V which is bounded from
above has a supremum. (iii) V is order separable if every non-empty subset
A of V possessing a supremum sup A contains a countable subset A0 saris-
2ying sup A sup A0.

(to be continued.)
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