17. The Vanishing Viscosity Method and a Two-phase Stefan Problem with Nonlinear Flux Condition of Signorini Type

By Nobuyuki KENMOCHI*) and Irena PAWLOW**)

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1987)

1. Introduction. This paper is concerned with a two-phase Stefan problem with nonlinear flux condition of the so-called Signorini type. Let Ω be a bounded domain in \mathbb{R}^N ($N \ge 2$) whose boundary consists of two smooth disjoint surfaces Γ_0 , Γ_1 , and let T be a fixed positive number, $Q = (0, T) \times \Omega$, $\Sigma_0 = (0, T) \times \Gamma_0$, and $\Sigma_1 = (0, T) \times \Gamma_1$. The problem, denoted by (P), is to find a function u = u(t, x) on Q satisfying

$$u_{\iota} - \Delta \beta(u) = 0 \quad \text{in } Q,$$

$$u(0, \cdot) = u_{0} \quad \text{in } \Omega,$$

$$\beta(u) = g_{0} \quad \text{on } \Sigma_{0},$$

$$- \frac{\partial \beta(u)}{\partial n} \in \Upsilon(\beta(u) - g_{1}) \quad \text{on } \Sigma_{1}.$$

Here $\beta: R \to R$ is a given function which vanishes on [0, 1], is non-decreasing on R and bi-Lipschitz continuous both on $(-\infty, 0]$ and $[1, +\infty)$; γ is a multivalued function from R into R given by $\gamma(r)=0$ for r>0, $\gamma(0)=(-\infty, 0]$ and $\gamma(r)=\emptyset$ for r<0; u_0 is a given initial datum; g_0 and g_1 are given functions on Σ_0 and Σ_1 , respectively; $(\partial/\partial n)$ denotes the outward normal derivative. For the data we postulate that

(A1) $g_i (i=0,1)$ is the trace of a function, denoted by g_i again, on Q such that $g_i \in W^{1,2}(0,T; H^1(\Omega)) \cap L^{\infty}(0,T; H^2(\Omega)), m_0 \leq g_0 \leq m'_0, m_1 \geq g_1 \geq m'_1$ a.e. on Q, where $m_0 \leq m'_0 < 0, m_1 \geq m'_1 > 0$ are constants.

(A2) (i) $u_0 \in L^{\infty}(\Omega)$, meas. $\{x \in \Omega; 0 \leq u_0(x) \leq 1\} = 0, v_0 = \beta(u_0) \in H^1(\Omega)$; (ii) $v_0 = g_0(0, \cdot)$ a.e. on $\Gamma_0, v_0 \geq g_1(0, \cdot)$ a.e. on Γ_1 ; (iii) there are constants $\delta > 0$, $k_0 < 0, k_1 > 0$ such that $v_0 \leq k_0$ a.e. on $\Omega_{0,\delta}$ and $v_0 \geq k_1$ a.e. on $\Omega_{1,\delta}$, where $\Omega_{i,\delta} = \{x \in \Omega; \text{ dist. } (x, \Gamma_i) < \delta\}, \quad i = 0, 1.$

In particular, when g_0 and g_1 are independent of time t, problem (P) was treated by Magenes-Verdi-Visintin [6] in the framework of nonlinear contraction semigroups in $L^1(\Omega)$ (cf. Bénilan [1], Crandall [3]), and the solution is unique in the sense of Crandall-Liggett [4]. Also, in case the flux condition is of the form $-(\partial/\partial n)\beta(u)=\gamma(t, x, \beta(u))$, with smooth function $\gamma(t, x, r)$ on $\Sigma_1 \times R$, the problem was uniquely solved in variational sense by Niezgodka-Pawlow [7], Visintin [9] and Niezgodka-Pawlow-Visintin [8].

^{*)} Department of Mathematics, Faculty of Education, Chiba University, Chiba, Japan.

^{**&#}x27; Polish Academy of Sciences, Systems Research Institute, Newelska 6, 01-447 Warsaw, Poland.

However, when the boundary flux is governed by a general time-dependent maximal monotone graph $\gamma(t, x, \cdot)$, we have not noticed any results, in particular on the uniqueness of solution. The purpose of the present note is to construct a solution of (P) by the vanishing viscosity method and to show the uniqueness of the solution constructed in such a way.

We use the following notations: $H = L^2(\Omega)$, $X = H^1(\Omega)$, $X_0 = \{z \in X; z = 0$ a.e. on $\Gamma_0\}$, $\langle \cdot, \cdot \rangle$ denotes the duality pairing between X'_0 and X_0 , dS denotes the usual surface element on Γ_0 , Γ_1 , and

$$(u, v) = \int_{a} uv dx, \qquad a(u, v) = \int_{a} \nabla u \cdot \nabla v dx.$$

2. Main results. We give a notion of solution to (P) in the variational sense.

Definition 1. A function $u: [0, T] \rightarrow H$ is called a weak solution of (P), if it satisfies the following (V1)-(V4):

- (V1) $u \in W^{1,2}(0, T; X'_0) \cap L^{\infty}(Q), \ \beta(u) \in W^{1,2}(0, T; H) \cap L^2(0, T; X);$
- (V2) $u(0) = u_0$ (in the space *H*);
- (V3) $\beta(u) = g_0$ a.e. on Σ_0 ;

(V4) there is $f \in L^2(\Sigma_1)$ such that $f \in \mathcal{T}(\beta(u) - g_1)$ a.e. on Σ_1 , and $\langle u'(t), \zeta \rangle + a(\beta(u(t)), \zeta) + \int_{\Gamma_1} f(t, \cdot)\zeta dS = 0$ for any $\zeta \in X_0$ and a.e. $t \in [0, T]$.

It should be remarked that if $\beta(u(t)) \in H^2(\Omega_{1,\delta})$ for some $\delta > 0$, then $f(t, \cdot) = -(\partial/\partial n)\beta(u(t, \cdot))$ on Γ_1 in (V4).

Now, consider approximations β^{ν} of β and γ_{ε} of γ , defined by

 $\beta^{\nu}(r) = \beta(r) + \nu r, \quad \nu \in (0, 1], \quad \Upsilon_{\varepsilon}(r) = -(-r)^{+}/\varepsilon, \quad \varepsilon \in (0, 1].$

Then we denote by (P)_e the problem (P) with γ replaced by γ_{e} , and by (P)^{ν} the problem (P) with β and u_0 replaced by β^{ν} and $u_0^{\nu} = (\beta^{\nu})^{-1}(v_0)$. The problems (P)_e, (P)^{ν} represent standard approximations to (P) and their weak solutions are defined correspondingly.

By virtue of the results in [7] we know that (i) for each $\varepsilon \in (0, 1]$, $(P)_{\varepsilon}$ has one and only one weak solution, denoted by u_{ε} ; (ii) if $0 < \varepsilon < \overline{\varepsilon} \le 1$, then $u_{\varepsilon} \le u_{\varepsilon}$ a.e. on Q. Also, by the results in [5], for each $\nu \in (0, 1]$, $(P)^{\nu}$ has one and only one weak solution in $W^{1,2}(0, T; H) \cap L^{\infty}(0, T; X)$, which is denoted by u^{ν} .

Definition 2. A function $u:[0,T] \rightarrow H$ is called a solution of (P) in the vanishing viscosity sense (in short, a V-solution of (P)), if it is a weak solution of (P) and if there is a sequence $u^{v_n} \in W^{1\,2}(0,T;H) \cap L^{\infty}(0,T;X)$ of weak solutions of (P)^{v_n} such that $u^{v_n} \rightarrow u$ in the weak* topology of $L^{\infty}(Q)$ as $n \rightarrow +\infty$.

Our main results are stated as follows.

Theorem. Suppose (A1) and (A2) hold. Then we have the following statements:

(a) (P) has at least one V-solution;

(b) any V-solution of (P) has the property that $u \in W^{1,2}(0, T; L^2(\Omega'))$, $\beta(u) \in L^2(0, T; H^2(\Omega'))$, where $\Omega' = \Omega_{0,\delta} \cup \Omega_{1,\delta}$ for some $\delta > 0$;

No. 3]

(c) any V-solution of (P) coincides with the limit u^* of the weak solutions u_{ε} of (P)_{ε} as $\varepsilon \downarrow 0$.

From this theorem it immediately follows that (P) has one and only one V-solution, and the weak solutions u^{ν} of (P)^{ν} converge to the V-solution u of (P) as $\nu \downarrow 0$ in such a way that $u^{\nu} \rightarrow u$ weakly* in $L^{\infty}(Q)$, $\beta^{\nu}(u^{\nu}) \rightarrow \beta(u)$ strongly in $L^{2}(Q)$ and weakly in $L^{2}(0, T; X)$, $(\partial/\partial n)\beta^{\nu}(u^{\nu}) \rightarrow (\partial/\partial n)\beta(u)$ weakly in $L^{2}(\Sigma_{1})$ and $\beta^{\nu}(u^{\nu})_{t} \rightarrow \beta(u)_{t}$ weakly in $L^{2}(Q)$.

3. Sketch of the proof. In order to obtain some bounds for Vsolutions of (P) we consider the approximate problem $(P)_{\varepsilon}^{\nu}$ which is the problem (P) with β , γ , u_0 replaced by β^{ν} , γ_{ε} , u_0^{ν} . We denote by u_{ε}^{ν} the weak solution of $(P)_{\varepsilon}^{\nu}$ for each $\nu \in (0, 1]$ and $\varepsilon \in (0, 1]$. We have the following estimates independent of ν and ε .

(1) $|u_{\varepsilon}^{\nu}|_{L^{\infty}(Q)} \leq M$, where M is any constant satisfying $|u_{0}|_{L^{\infty}(Q)} \leq M$, $\beta(-M) \leq m_{0}$ and $\beta(M) \geq m_{1}$.

(2) $\beta^{\nu}(u_{\varepsilon}^{\nu}) \leq -c$ a.e. on $Q_{0,\delta} = (0, T) \times \Omega_{0,\delta}$ and $\beta^{\nu}(u_{\varepsilon}^{\nu}) \geq c$ a.e. on $Q_{1,\delta} = (0, T) \times \Omega_{1,\delta}$ for some constants c > 0 and $\delta > 0$.

(3) $\{\beta^{\nu}(u_{\delta}^{\nu}); 0 < \nu \leq 1, 0 < \varepsilon \leq 1\}$ is bounded in $W^{1,2}(0, T; H) \cap L^{\infty}(0, T; X)$ and in $L^{2}(0, T; H^{2}(\Omega'))$, with $\Omega' = \Omega_{0,\delta} \cup \Omega_{1,\delta}$ for some $\delta > 0$, and hence $\{u_{\varepsilon}^{\nu}; 0 < \nu \leq 1, 0 < \varepsilon \leq 1\}$ is bounded in $W^{1,2}(0, T; L^{2}(\Omega'))$.

In fact, estimates (1) and (2) are obtained from assumptions (A1), (A2) and the usual comparison results, and (3) is shown by making use of regularity results in Brézis [2; Chapter 1]. Next, by the monotonicity of solutions u_{ε}^{*} with respect to ε we have :

(4) For each $\nu \in (0, 1]$, $u_{\varepsilon}^{\nu} \uparrow u^{\nu}$ strongly in $L^{2}(Q)$ and weakly in $W^{1,2}(0, T; H)$ as $\varepsilon \downarrow 0$, and $\{u^{\nu}; 0 < \nu \leq 1\}$ has the same bounds as (1)-(3).

Besides, by the uniqueness of solution to $(P)_{\epsilon}$ and estimates (1)–(3) we see :

(5) For each $\varepsilon \in (0, 1]$, $u_{\varepsilon}^{\varepsilon} \to u_{\varepsilon}$ weakly* in $L^{\infty}(Q)_{s}, \beta^{\varepsilon}(u_{\varepsilon}^{\varepsilon}) \to \beta(u_{\varepsilon})$ strongly in $L^{2}(Q)$ and weakly in $L^{2}(0, T; X)$, $(\partial/\partial n)\beta^{\varepsilon}(u_{\varepsilon}^{\varepsilon}) \to (\partial/\partial n)\beta(u_{\varepsilon})$ strongly in $L^{2}(\Sigma_{1})$, and $\beta^{\varepsilon}(u_{\varepsilon}^{\varepsilon})_{t} \to \beta(u_{\varepsilon})_{t}$ weakly in $L^{2}(Q)$ as $\nu \downarrow 0$, and moreover $\{u_{\varepsilon}; 0 < \varepsilon \leq 1\}$ has the same bounds as (1)-(3).

Using the facts (1)–(5), we can prove the theorem as follows. Let u^* be the limit of u_{ε} as $\varepsilon \downarrow 0$. Note that there exists a sequence $\{\nu_n\}$ with $\nu_n \downarrow 0$ (as $n \to \infty$) such that $u^{\nu_n} \to u$ weakly* in $L^{\infty}(Q)$, $\beta^{\nu_n}(u^{\nu_n}) \to \beta(u)$ strongly in $L^2(Q)$ and weakly in $L^2(0, T; X)$, $(\partial/\partial n)\beta^{\nu_n}(u^{\nu_n}) \to (\partial/\partial n)\beta(u)$ weakly in $L^2(\Sigma_1)$, and $\beta^{\nu_n}(u^{\nu_n})_t \to \beta(u)_t$ weakly in $L^2(Q)$ for some function $u \in L^{\infty}(Q)$. Then both u^* and u are weak solutions of (P), and by definition u is a V-solution of (P). Moreover, $u^* \leq u$ a.e. on Q, since $u_{\varepsilon^n} \leq u^{\nu_n}$ a.e. on Q. Besides, $\beta(u^*)$, $\beta(u) \in L^2(0, T; H^2(\Omega'))$. Hence by monotonicity arguments $(\partial/\partial n)\beta(u) \leq (\partial/\partial n)\beta(u^*)$ a.e. on Σ_1 , and for the solution ζ of $-\Delta\zeta = 0$ in Ω with $\zeta = 0$ on Γ_0 and $\zeta = 1$ on Γ_1 , we observe from (V4) that

$$\langle u'(t) - u^{*'}(t), \zeta \rangle - (\beta(u(t)) - \beta(u^{*}(t)), d\zeta) + \int_{\Gamma_1} (\beta(u(t, \cdot)) - \beta(u^{*}(t, \cdot))) \frac{\partial \zeta}{\partial n} dS - \int_{\Gamma_1} \left(\frac{\partial \beta(u(t, \cdot))}{\partial n} - \frac{\partial \beta(u^{*}(t, \cdot))}{\partial n} \right) dS = 0$$

for a.e. $t \in [0, T]$. Noting $(\partial/\partial n)\zeta \ge 0$ on Γ_1 , we have

$$\frac{d}{dt}(u(t)-u^*(t),\zeta) = \langle u'(t)-u^{*'}(t),\zeta \rangle \leq 0 \quad \text{for a.e. } t \in [0,T].$$

Since $\zeta > 0$ and $u(t, \cdot) \ge u^*(t, \cdot)$ in Ω , this implies $u = u^*$ on Q.

References

- Ph. Bénilan: Equations d'évolution dans un espace de Banach quelconque et applications. Thèse, Publications Math. Orsay, Univ. Paris-Sud, Orsay, vol. 25 (1972).
- [2] H. Brézis: Problèmes unilatéraux. J. Math. Pures Appl., 51, 1-168 (1972).
- [3] M. G. Crandall: Dependence on the data for degenerate parabolic equations with nonlinear boundary conditions (from the lecture presented in the "Seminar on Nonlinear Evolution Equations", Waseda Univ., 1986).
- [4] M. G. Crandall and T. Liggett: Generation of semigroups of nonlinear transformations on general Banach spaces. Amer. J. Math., 93, 265-298 (1971).
- [5] N. Kenmochi: On the quasilinear heat equation with time-dependent obstacles. Nonlinear Anal., 5, 71-80 (1981).
- [6] E. Magenes, C. Verdi, and A. Visintin: Semigroup approach to the Stefan problem with nonlinear flux. Atti Acc. Lincei Rend. fis., 75, 24–33 (1983).
- [7] M. Niezgodka and I. Pawlow: A generalized Stefan problem in several space variables. Applied Math. Opt., 9, 193-224 (1983).
- [8] M. Niezgodka, I. Pawlow, and A. Visintin: Remarks on the paper by A. Visintin "Sur le problème de Stefan avec flux non linéaire". Boll. Un. Mat. Ital., 18C, 87-88 (1981).
- [9] A. Visintin: Sur le problème de Stefan avec flux non linéaire. ibid., 18C, 63-86 (1981).