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The aim of this paper is to calculate (in the framework of 9 ;-Modules)
the tensor product of two holonomic systems supported on non-singular
plane curves.

§0. Notation. Let X be a domain in C* containing the origin
P=(0,0). Let Oy be the sheaf of germs of holomorphic functions and 9,
the sheaf on X of rings of linear partial differential operators of finite order
with holomorphic coefficients. Let F be an analytic plane curve (on X)
passing through P with a defining equation f=0. Let us denote by
Itm(Ox) the sheaf of algebraic local cohomology with supports in F':

ﬂ%r](@X)=likﬂ thlax O] () Ox)=0x[F1]/Ox.

Note that the module 4({z(@x), which is endowed with a natural structure
of left 9,-Module, is a holonomic system.

§1. Statement of the results. Let F and G be plane curves meeting
properly at a point P. We set:

.f= ﬂ[ép](@x) ® ﬂ%a](@x)
=Dxx2®p-10z0p510x P7 ' Him(O)QD: ' Hic(Ox)),

where p, and p, are the first and the second projections from X x X to X.
The following quasi-isomorphism is a special case of a result of Kashiwara

[21:

L L
j{}m(Ox)®ox ﬂEG](@X)=@X~XXX®H)xxx -E

we have the following

Theorem 1 (Intersection formula). Let F and G be non-singular plane
curves (on X) intersecting properly at P. We assume FNG=P. Then we
have the following isomorphisms of D z-Modules.

1) Gor>*(Dg.xxx-LI=0 for k+0,

(2) j[%F](OX) ®oxa4(%a](0x) =QX-»XXX ®g)xxx L= ﬂ%?](Ox),
where Hip1(Oy) is the Dy-Module of algebraic local cohomology with sup-
ports in P,

Remark 2. In the case where F and G being transversal the results
above are well known (cf. Sato-Kawai-Kashiwara [3], Schapira [4]).

Example 3. Set X={(x,y)eC%, X,={(x,,y)eC, and X, ={(x, ¥»)
e C}. X, and X, are two copiesof X. PutF={(x,, ¥)|¥,=0}, G={(zs, ¥,)|
Y,—2:=0}. We denote by d(y,) (resp. d(y,—x2)) the canonical generator of
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Hir(Ox) (resp. Hie(Ox)). We set: A
Mm=ly_ xxx, QW) ® (Y, —xd)
where ly_y,x, 18 @ canonical section of Dy_y,«x, (cf. [3], [4]). We get:
.@Xm= @X_.xlxxg ®QX1xXg (‘ﬂ[éF](OXI) ® ﬂ%a](Ox,))
and

Dym=D, / (@Xx2+@x<x§;+2>+@xy).

Setting u= —2xm, we have
g)xm=@a’u=@z/(@x9ﬂ+g)x?ﬁ=ﬂfp](Ox),

where P=(0,0).

Theorem 4 (Self intergection formula). Let F be a non-singular plane
curve. We set:

F=Dyux ®p;1_cpx®p;1.cpx (pflﬂéz«"](ox) ® Pt EF](OX))'

Then we have

Q) Jord=x(Dy_xyx PH=0 k=*~1

2 Gor!**(Dx_xxx» B=Hir(Ox)-

§2. Sketch of the proofs. Set X, = {(x,,y)e C%, X,={(x,,y,)eC%,
and X={(x,y) € C}={(x,, ¥y, %5, ¥») € X, X X, |2, =2, ¥;=17,}. Denoting the
canonical section of Dy_x,xx, bY lx_x,xx, We have:

Blyxixxrs=lroxix 0. QT =1y x,xx, ®T:

( * ) %lx-xlxxg=lx-xlxx2 ®(~a%; + 'aaz)
ete.

Set L=90te(0x) D H1s:(Ox). Recall that D, X,XXQ(L@.E is quasi-isomor-
phic to the following complex :
(( x1+902) .f‘ 0.

By using the relations (x) we can calculate the 9,-Module structure of the
homology groups of the complex (xx). This yields the results.

(901 X9, Y1—Y2)

(xx) 0«—

a@a
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