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1. Introduction. Let K be an imaginary quadratic field and N a
prime number which splits in K as: (N)=J1-JI'. Let © be an order in K
and L=K(5(©®)), the corresponding ring class field. Deep results were
obtained by Ramachandra, Robert, Shintani, Stark and others concerning
the generation of subfields of L by values of analytic functions. In this
note we observe that under certain conditions, the Siegel units, which are
special values obtained from the 4-function, generate subfields of L. The
motivation comes from the study of Heegner points on the modular curve
X,(N). (See[l1].) The details of the proofs will appear elsewhere.

2. Notations. In O, write (N)=T1,-Jl; where Jl,=JINEO. For any
subfield F' of L containing K, let c¢I(L/F) denote the subgroup of Pic O
which corresponds to Gal(L/F') under the isomorphism of class field theory
Pic O=Gal(L/K). Let h be the class number of K and choose « € K such
that J1"=(«). Consider the Siegel unit:

=) ]
o 4(T1,)
and let [J],] denote the class of J1, in Pic ©.

3. Theorem 1. Notations being as above, we have:

(i) If [91] is not of order dividing 2 modulo cl(L/F), then the exten-
sion F'[K(N,(e)) is at most quadratic.

(ii) If [J1] is not of order dividing 4 modulo cl(L/F), then

F =K(N L/F(E))-
As an application we obtain the following :
Theorem 2. Let p be an odd prime and O, the order of K of conductor

p*. Let:
w=() " [ 5 ]

where J1,=T1N0O,. Andlet K, denote the anticyclotomic Z -extension of
K. Then, for n sufficiently large :

Kn':K(NL,,/K,,(e:L)); s=1,2,8, .-
where L,=K((O,)), the ring class field corresponding to ©, and K, is the
n-th layer of K...
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