103. Some Remarks on the Generation of Subfields of Ring Class Fields

By François RAMAROSON
Department of Mathematics, Howard University

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1987)

- 1. Introduction. Let K be an imaginary quadratic field and N a prime number which splits in K as: $(N) = \mathcal{N} \cdot \mathcal{N}^t$. Let \mathcal{O} be an order in K and $L = K(j(\mathcal{O}))$, the corresponding ring class field. Deep results were obtained by Ramachandra, Robert, Shintani, Stark and others concerning the generation of subfields of L by values of analytic functions. In this note we observe that under certain conditions, the Siegel units, which are special values obtained from the Δ -function, generate subfields of L. The motivation comes from the study of Heegner points on the modular curve $X_0(N)$. (See [1].) The details of the proofs will appear elsewhere.
- 2. Notations. In \mathcal{O} , write $(N) = \mathcal{N}_0 \cdot \mathcal{N}_0^*$ where $\mathcal{N}_0 = \mathcal{N} \cap \mathcal{O}$. For any subfield F of L containing K, let cl(L/F) denote the subgroup of Pic \mathcal{O} which corresponds to Gal(L/F) under the isomorphism of class field theory Pic $\mathcal{O} \approx Gal(L/K)$. Let h be the class number of K and choose $\alpha \in K$ such that $\mathcal{N}^h = (\alpha)$. Consider the Siegel unit:

$$\varepsilon = \left(\frac{\alpha^{\tau}}{\alpha}\right)^{12} \cdot \left[\frac{\Delta(\mathcal{D}_0^{\tau})}{\Delta(\mathcal{D}_0)}\right]^h$$

and let $[\mathcal{I}_0]$ denote the class of \mathcal{I}_0 in Pic \mathcal{O} .

- 3. Theorem 1. Notations being as above, we have:
- (i) If $[\mathcal{N}_0]$ is not of order dividing 2 modulo cl(L/F), then the extension $F/K(N_{L/F}(\varepsilon))$ is at most quadratic.
 - (ii) If $[\mathcal{H}_0]$ is not of order dividing 4 modulo cl(L/F), then $F = K(N_{L/F}(\varepsilon))$.

As an application we obtain the following:

Theorem 2. Let p be an odd prime and \mathcal{O}_n the order of K of conductor p^n . Let:

$$\varepsilon_n = \left(\frac{\alpha^{\tau}}{\alpha}\right)^{12} \cdot \left[\frac{\Delta(\mathcal{N}_n^{\tau})}{\Delta(\mathcal{N}_n)}\right]^h$$

where $\mathcal{H}_n = \mathcal{H} \cap \mathcal{O}_n$. And let K_{∞} denote the anticyclotomic \mathbf{Z}_p -extension of K. Then, for n sufficiently large:

$$K_n = K(N_{L_n/K_n}(\varepsilon_n^s))$$
; $s = 1, 2, 3, \cdots$

where $L_n = K(j(\mathcal{O}_n))$, the ring class field corresponding to \mathcal{O}_n and K_n is the n-th layer of K_{∞} .

References

- [1] B. Gross: Heegner points on $X_0(N)$. In Rankin, R. A. (ed.), Modular Forms. Halsted Press, New York, pp. 87-106 (1984).
- [2] K. Ramachandra: Some applications of Kronecker's limit formulas. Ann. of Math., 80, 104-148 (1964).