On a Class of Partially Hypoelliptic Microdifferential Equations

By Nobuyuki Tose and Moto-o Uchida Department of Mathematics, Faculty of Science, University of Tokyo (Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1987)

§ 1. Introduction. We study a class of microdifferential equations with double characteristics which are non-hyperbolic. Explicitly, let M be a real analytic manifold with a complexification X and let P be a microdifferential operator defined in a neighborhood of $\rho_0 \in T_M^*X$ $(=T_M^*X \setminus M)$ whose principal symbol is written as

(1)
$$p = \sigma(P) = p_1 + \sqrt{-1} q_1^{2m} \cdot p_2$$

in a neighborhood of ρ_0 . Here p_1 , p_2 and q_1 are homogeneous holomorphic functions of order 1, 1 and 0 respectively, which are defined in a neighborhood of ρ_0 . We assume that p_1 , p_2 and q_1 satisfy the following conditions (2)-(6).

- (2) p_1 , p_2 and q_1 are real valued on T_M^*X .
- dp_1 , dp_2 and ω (the canonical 1-form of T_M^*X) are linearly independent (3)
- $\{p_1, p_2\} = 0$ if $p_1 = p_2 = 0$ where $\{\cdot, \cdot\}$ denotes Poisson bracket on T_M^*X . (4)
- (5) $\{p_1, q_1\} \neq 0$ at ρ_0 .

(6)
$$p_1(\rho_0) = p_2(\rho_0) = q_1(\rho_0) = 0.$$

We give a theorem concerning the propagation of singularities of solutions to Pu=0 on the regular involutory submanifold

$$\Sigma = \{ \rho \in \dot{T}_{M}^{*}X ; p_{1}(\rho) = p_{2}(\rho) = 0 \}.$$

Precisely, we will show supp (u) is a union of bicharacteristic leaves of Σ for any $u \in \mathcal{C}_{M,\rho_0}$ satisfying Pu=0. Interesting is the fact that P is hypoelliptic in the framework of 2-microlocalization.

 $\S 2$. Preliminary. Let M be a real analytic manifold with a complexification X and Σ be a regular involutory submanifold of $\dot{T}_{\underline{M}}^*X$. a complexification Λ of Σ in T^*X . Then $\tilde{\Sigma}$ denotes the union of all bicharacteristic leaves of Λ eminated from Σ . On $T_z^*\tilde{\Sigma}$, M. Kashiwara constructed the sheaf \mathcal{C}^2_{Σ} of 2-microfunctions along Σ . (See Kashiwara-Laurent [2] for details about C_{Σ}^2 .) We can study the properties of microfunctions on Σ precisely by \mathcal{C}_{Σ}^2 . Actually, we have the following exact sequences (7) and (8).

$$(7) \qquad 0 \longrightarrow \mathcal{C}_{\tilde{\Sigma}}|_{\Sigma} \longrightarrow \mathcal{B}_{\Sigma}^{2} \longrightarrow \dot{\pi}_{*}(\mathcal{C}_{\Sigma}^{2}|_{T_{\Sigma}^{*}\tilde{\Sigma}\backslash\Sigma}) \longrightarrow 0. \qquad (\dot{\pi}: T_{\Sigma}^{*}\tilde{\Sigma}\backslash\Sigma \longrightarrow \Sigma.)$$

$$(8) \qquad 0 \longrightarrow \mathcal{C}_{M}|_{\Sigma} \longrightarrow \mathcal{B}_{\Sigma}^{2}.$$

$$(8) 0 \longrightarrow \mathcal{C}_{M}|_{\Sigma} \longrightarrow \mathcal{B}_{\Sigma}^{2}.$$

Here $\mathcal{C}_{\tilde{\Sigma}}$ is the sheaf of microfunctions along $\tilde{\Sigma}$ and $\mathcal{B}_{\Sigma}^2 = \mathcal{C}_{\Sigma}^2|_{\Sigma}$.

Moreover there exists the canonical spectral map

$$(9) Sp_{\Sigma}^{2}: \pi^{-1}\mathcal{B}_{\Sigma}^{2} \longrightarrow \mathcal{C}_{\Sigma}^{2} (\pi: T_{\Sigma}^{*}\tilde{\Sigma} \longrightarrow \Sigma),$$

by which we set for $u \in \mathcal{C}_M|_{\Sigma}$, $SS_{\Sigma}^2(u) = \text{supp}(Sp_{\Sigma}^2(u))$.

We regard Λ as a submanifold of $\Lambda \times \Lambda$ through the injection $T^*X \simeq T^*_{J_X}(X \times X) \to T^*(X \times X)$. Here Δ_X denotes the diagonal subset of $X \times X$. Then $\tilde{\Lambda}$ expresses the union of all bicharacteristic leaves of $\Lambda \times \Lambda$ issued from Λ . On $T^*_{\Lambda}\tilde{\Lambda}$, Y. Laurent constructed the sheaf $\mathcal{E}^{2,\infty}_{\Lambda}$ of 2-microdifferential operators along Λ which act on \mathcal{E}^2_{Σ} . See Y. Laurent [5] for details about $\mathcal{E}^{2,\infty}_{\Lambda}$.

§ 3. Statement of the main theorem. We follow the notation prepared in § 1. Then we give

Theorem 1. Let u be a microfunction defined in a neighborhood of ρ_0 satisfying Pu=0. Then supp (u) is contained in $\sum = \{\rho \in T_M^*X ; p_1(\rho) = p_2(\rho) = 0\}$ in a neighborhood of ρ_0 . Moreover $SS_{\Sigma}^2(u)$ is contained in the zerosection Σ of $T_{\Sigma}^*\tilde{\Sigma}$ and thus supp (u) is a union of bicharacteristic leaves of Σ .

§ 4. Proof of the main theorem. By finding a suitable real quantized contact transformation, we may assume from the beginning that P is defined in a neighborhood of $\rho_0 = (0, \sqrt{-1} dx_n)$ and has a form:

(10)
$$P = D_1 + \sqrt{-1}\theta(x, D)x_1^{2m}D_2 + (lower order).$$

Here we take a coordinate of T_M^*X [resp. T^*X] as $(x, \sqrt{-1} \xi \cdot dx)$ [resp. $(z, \zeta \cdot dz)$] with $x = (x_1, \dots, x_n)$, $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$ [resp. $z = (z_1, \dots, z_n)$, $\zeta = (\zeta_1, \dots, \zeta_n) \in \mathbb{C}^n$] and $\theta(x, D)$ is real elliptic of order 0 at ρ_0 . Then we find in this case

(11)
$$\Sigma = \{(x, \sqrt{-1}\,\xi \cdot dx) \in T_M^*X; \, \xi_1 = \xi_2 = 0\}.$$

The 1st claim of the theorem is assured by M. Sato *et al.* [7]. Moreover the equation Pu=0 is hypoelliptic outside Σ . This fact easily follows from the fact that P_0 is microhyperbolic in the direction dx_1 or $-dx_1$ at any point on $\{\rho \in \dot{T}_M^* X \setminus \Sigma : x_1(\rho) = \xi_1(\rho) = 0\}$.

We employ the theory of 2-microlocalization along Σ to see the phenomenon on Σ of solutions to (10). We take a coordinate of $T_{\Sigma}^*\tilde{\Sigma}$ as $(x, \sqrt{-1}\xi'' \cdot dx''; \sqrt{-1}(x_1^* \cdot dx_1 + x_2^* \cdot dx_2))$ with $\xi'' = (\xi_3, \dots, \xi_n), \ x'' = (x_3, \dots, x_n) \in \mathbb{R}^{n-2}$ and $(x_1^*, x_2^*) \in \mathbb{R}^2$. We see easily that

$$(12) ch_A^2(P) \cap (T_{\mathcal{Z}}^*\tilde{\Sigma} \setminus \Sigma) = \{x_1 = x_1^* = 0\}$$

where $ch_{\Lambda}^{2}(P)$ denotes the microcharacteristic variety of P along Λ . (See §3.1.1 of Y. Laurent [5] for the definitions of $ch_{\Lambda}^{2}(\cdot)$.)

We can find a real suitable quantized bicanonical transformation through which the equation Pu=0 is transformed into $P_0u=0$ defined in a neighborhood of $\tau_0=(0,\sqrt{-1}\,dx_n\,;\,\sqrt{-1}\,dx_2)\in T_z^*\tilde{\Sigma}$ with

(13)
$$\sigma_{A}(P_{0}) = z_{1}^{*} + \sqrt{-1} z_{1}^{2m} z_{2}^{*}.$$

Here we take a coordinate of $T_A^*\tilde{\Lambda}$ as $(z, \zeta'' \cdot dz''; z_1^*dz_1 + z_2^*dz_2)$ with $\zeta'' = (\zeta_s, \ldots, \zeta_n) \in C^{n-2}$ and $(z_1^*, z_2^*) \in C^2$. This fact can be shown by essentially the same way as M. Sato *et al.* [7]. Using Theorem 4.4 of N. Tose [9] (see also [11]), we can find an invertible $Q \in \mathcal{E}_A^{2,\infty}$ satisfying

(14)
$$P_0Q = Q(D_1 + \sqrt{-1} x_1^{2m} D_2).$$

Thus it suffices to study 2-microlocally at τ_0 the equation

(15)
$$P_1 u = (D_1 + \sqrt{-1} x_1^{2m} D_2) u = 0.$$

For any $u \in \mathcal{C}^2_{\Sigma,\tau_0}$ satisfying (15), we see by (12)

(16)
$$\sup (u) \subset \{x_1 = x_1^* = 0\}.$$

Moreover $-dx_1$ is 2-microhyperbolic for P along Σ at τ_0 . This means

$$(-H)(-dx_1) \in C_{T_{\underline{z}}^*\tilde{z}}(C_{\tilde{z}}(ch(P_1))).$$

Here $C_*(\cdot)$ denotes the normal cone defined in [3] and H is Hamiltonian isomorphism $H: T^*T^*_{\mathcal{I}}\tilde{\Sigma} \Rightarrow T_{T^*_{\mathcal{I}}\tilde{\Sigma}}T^*\tilde{\Sigma}$ induced from $H: T^*T^*\tilde{\Sigma} \Rightarrow TT^*\tilde{\Sigma}$. Then the conditions (16) and (17) implies that u=0 at τ_0 . This fact can be shown using Theorem 5.2.1 of Kashiwara-Schapira [4]. (See also §2 of [10] for the definition of 2-microhyperbolicity.)

After all, we find that $SS_{\mathfrak{I}}^{\mathfrak{z}}(u)\subset \Sigma$ for $u\in \mathcal{C}_{\mathtt{M}}$ satisfying (10). Thus we have shown that $u\in \mathcal{C}_{\mathtt{F}}$ and that u has unique continuation property along bicharacteristic leaves of Σ . This implies the assertion of the theorem.

(q.e.d.)

Remark 2. The assertion of propagation of singularities itself can be verified in a more direct way using microlocal version of Holmgren's theorem. Consider the equation (10) and take any microfunction solution u to (10). Then by Bony-Schapira [12] or Theorem 9.2.1 of Kashiwara-Schapira [3], we see easily that supp $(u)\setminus\{x_1=0\}$ is a union of bicharacteristic leaves of $\Sigma\setminus\{x_1=0\}$. Moreover dx_1 is non microcharacteristic for P along $\tilde{\Sigma}$ at any point of $\{x_1=\xi_1=0\}$, which implies immediately the assertion of propagation of singularities above. We emphasize here in this note that P is hypoelliptic in the frame work of 2-microlocalization.

Remark 3. Consider the case that a microdifferential operator P defined in a neighborhood of $\rho_0 \in \dot{T}_M^*X$ has the principal symbol of the form: $\sigma(P) = p_1 + \sqrt{-1} \, q_1^{2k+1} p_2$ where p_1 , p_2 and q_1 satisfy the same conditions as in §1. We can also show

$$\mathcal{H}_{om_{\mathcal{E}_X}}(\mathcal{E}_X/\mathcal{E}_XP,\,\mathcal{C}_{\Sigma}^2)_{\tau}=0$$

for any $\tau \in T_z^* \tilde{\Sigma} \setminus \Sigma$ satisfying $(ad^r \sigma_A(P))^{2k+1} \overline{\sigma_A(P)(\tau)} > 0$. Here we denote the relative Hamiltonian vector field H_f^r by ad_f^r . (See [5] for H_f^r .) The proof can be given in the same way as in this section using the 2nd semihyperbolicity of P and the exact sequence

$$(18) 0 \longrightarrow \mathcal{C}_{\Gamma_1 \tilde{\Sigma}}^2 \longrightarrow \mathcal{C}_{\Sigma}^2 \longrightarrow {}_{+}^{\oplus} \mathcal{C}_{\Sigma_{+} 1 \tilde{\Sigma}}^2 \longrightarrow 0.$$

Refer to M. Uchida [13] for the notion of 2nd semihyperbolicity and the sheaves appearing in (18).

§ 5. Remark. A few words about the existence of microfunction solutions to (10). Theorem 1 shows that we have only to consider solutions with holomorphic parameters (z_1, z_2) . We set $N = \{x \in M \; ; \; x_1 = 0\}$ and take a complexification Y of N in X. We take a coordinate of T_N^*Y as $(\tilde{x}, \sqrt{-1}\tilde{\xi} \cdot d\tilde{x})$ with $\tilde{x} = (x_2, \dots, x_n)$ and $\tilde{\xi} = (\xi_2, \dots, \xi_n) \in \mathbb{R}^2$. Since Y is non-microcharacteristic for P along $\tilde{\Sigma}$, we have a natural isomorphism

(20)
$$\mathcal{H}_{om_{\mathcal{E}_{X}}}(\mathcal{E}_{X}/\mathcal{E}_{X}P_{0}, \mathcal{C}_{\tilde{\Sigma}})|_{Y\underset{X}{\times}\tilde{\Sigma}} \xrightarrow{\sim} \mathcal{C}_{\tilde{\Sigma}_{0}}.$$

Here Σ_0 is a regular involutory submanifold of T_N^*Y :

$$\Sigma_0 = \{(\tilde{x}, \sqrt{-1}\tilde{\xi} \cdot d\tilde{x}) \in T_N^*Y; \xi_2 = 0\}.$$

The above isomorphism can be deduced from a result of P. Schapira [8].

References

- Kashiwara, M. and T. Kawai: Microhyperbolic pseudo-differential operators. I.
 J. Math. Soc. Japan, 27, 359-404 (1975).
- [2] Kashiwara, M. and Y. Laurent: Théorèmes d'annulation et deuxième microlocalisation. Prépublication d'Orsay (1983).
- [3] Kashiwara, M. and P. Schapira: Microhyperbolic systems. Acta Math., 142, 1-55 (1979).
- [4] —: Microlocal Study of Sheaves. Astérisque, 128 (1985).
- [5] Laurent, Y.: Théorie de la deuxième microlocalisation dans le domaine complexe. Progress in Math., Birkhäuser, no. 53 (1985).
- [6] Sato, M., M. Kashiwara, and T. Kawai: Hyperfunctions and pseudo-differential equations. Lect. Notes in Math., Springer, no. 287, pp. 265-529 (1973).
- [7] —: On the structure of single pseudo-differential equations. Proc. Japan Acad., 48A, 643-646 (1972).
- [8] Schapira, P.: Propagation at the boundary of analytic singularities. Singularities in Boundary Value Problems (eds. H. G. Garnir and D. Reidel). pp. 185-212 (1980).
- [9] Tose, N.: 2nd microlocalization and conical refraction. Ann. Inst. Fourier, 37-2 (1987) (in press).
- [10] —: On a class of 2-microhyperbolic systems (to appear in J. Math. pures appl., 67, 1-15).
- [11] -: 2nd microlocalization and conical refraction (II) (preprint).
- [12] Bony, J. M. and P. Schapira: Propagation des singularités analytiques pour les solution des équations aux dérivées partielles. Ann. Inst. Fourier, 26, 81-140 (1976).
- [13] Uchida, M.: 2nd microlocal boundary value problems and their application (in preparation).