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§1. Introduction. In this note we shall prove the following

Theorem. Let 4 be any graph which is a constant link of a finite
graph and which has at least one isolated vertex and at least three vertices.
Then for any countable group G there are infinitely many connected graphs
I with constant link 4 and Aut I"'=G.

Since nK, is the constant link of K, ,, we have the following

Corollary. For any countable group G and any integer n=3 there
are infinitely many connected n-regular graphs I' with AutI"'=G.

The case n=3 and with finite group G of this corollary was proved by
Frucht [1] and this result was extended to general n>=3 by Sabidussi [2].
The case with finite group G of our theorem was proved by Vogler [4].
Our proof is an extension of [4]. We shall use the same notations as in [4].

§2. Proof of Theorem. First we refer tothe following lemma with-
out proof, whose proof is similar to that in [4; Theorem 1].

Lemma 1. Let G be a countable group, 4 a constant link of a finite
graph with at least three vertices and at least one isolated vertex. If for
each k=3,4,5 there are infinitely many connected k-regular prime graphs
[T with Aut [[,=G and a stable k-coloring, then there are infinitely many
connected graphs I' with constant link 4 and Aut '=G.

Thus it is sufficient to prove the next lemma to prove our theorem.

Lemma 2. Let G be a countable group. Then for each k=3,4,5 there
are infinitely many connected k-regular prime graphs [[, with Aut [[.=G
and a stable k-coloring.

Proof. First we show that for each k=3, 4, 5 there is a connected
k-regular prime graph I', with Aut ', =G and a stable k-coloring. If G is
generated by a finite number of its elements, we see the existence of such
a graph I'; for each k=3,4,5 by graphs similarly constructed to those in
[1; Theorem 4.1], [2; Theorem 3.7] and [4 ; Lemma 5]. So we assume for
a while that G is not generated by any finite subset. Let S={x,: 1€ N}be
an infinite subset of G satisfying S21 and (S)=G. Let us set G,=(«,, z,,
-+ -,x,>. Now for every integer ¢=2 if x, is contained in G,_,, we remove
z, from S. Consequently, G=(S) holds and there is no finite subset {s,:
1=1,2, ---,t} of S satisfying si'sy?- - -sit=1 with ¢;,=+1. Hereafter we set

S={y,: e N}. Let us define graphs I',, I, and ['; as follows:

V(Fs)=V(P4)=V(F5)={(.7’ g): jGN, ge G},

ETy)={l1, 9,2, 9], [1, 9,3, ], [1, 9,4, 9], [(2, 9), 5, 9],
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(2, 9, (6, 91, I8, 9, (6, 9], I8, 9, (7T, D], [(4, P, (T, P],
[(4, 9, (10, )], (5, 9), (6, 91, [(5, 9, (8, D], [(7, 9), (8, 9],
[(8,9),9, 9]: g € GIU{[(m+8, 9),(m+10, 9)],
[@m+T7, 9), 2m+8,y,9)1: meN, g G},
ET)={1, 9,2, 9], [(1,9), 6, 9], (1, 9), 4, 9], [A, 9, (6, 9],
[(2, 9,6, 9], 12, 9, (T, 9], [(2, 9), A0, 9], [(3, 9), 4, 9],
(3, 9), 5, 9], (4, 9), 5, 9], [(4, 9), 8, 9], [(5, 9), (6, 9],
(5, 9,11, 9}, [(6, 9, 9, 9], [(6, 9, (12, 9]: g € G}U
{[(m+86, 9), (m+12, 9)], [(8m+-4, 9), (Bm—+5, Y291,
(Bm+4, 9), Bm+6,ys,-,9)], [(Bm+5, 9), Bm+6,¥,,9)]:
meN, geG},
ETy)={l1, 9,2, 9], [A, 9,8, 9], (1, 9), 4, 9], [, 9), (5, 9],
[, 9,7, 91, I(2, 9, B, 9], [(2, 9, (8, 9], [(2, 9), (10, P],
3, 9,4, 9], [(8, 9, (6, 9], (3, 9,9, 9], [4, 9, (5, D],
(4, 9,09, 9], (5, 9), (6, 91, [(5, 9), (9, 9], [(6, ), (7, NI,
[, 9, (10, 1, (7, 9), (10, 9], [(8, 9), (9, 9], [(2, 9), A1, D],
(4, 9), (12, 91, [(8, 9), (13, 9], [(9, 9), (14, 9], [(5, ), (15, 9],
[(7, 9), 16, 91, [(8, 9), A7, 91, [(10, 9, (18, 9], [(6, 9), (19, 9],
[(7, 9, (20, 9], [(8, 9), (21, 9)], [(10, 9), (22, 9)]: g € G}U
{[(m+10, 9), (m+22, 9)], [(4m+17, 9), (4m+8, Y, _sD],
[Am+17, 9), Am+9, Yo,_49)], [(dm+T, 9), (4dm+10, Yyn-.9)],
[(4m+8, 9), Am+9, Yen-.9)], [(dm+8, 9), (4m+10, Yyn-9)],
[(4m+9, 9), Am~+10,y,,9)]: meN, g € G}.

Then ', is a connected k-regular prime graph with a stable k-coloring
(k=3,4,5). For each he G if we define a bijection ¢,: V(I")—-V (") by
0.(7, 9)=(7, gh), we can find Aut I',={0,: h € G}=G for each k=3, 4, 5 (see
[1; Theorem 4.1]). Thus we complete the first paragraph of the proof.

Next we show that there are infinitely many (non-isomorphic) such
graphs. We construct I"; from I, by replacing each vertex by a triangle.
Then we see that I'; is a connected 3-regular prime graph with Aut =G
and a stable 3-coloring (see [4; Lemma 4]). Of course ['; and I} are not
isomorphic to each other, because respective minimum circuits of I", and
I'; whose lengths are not divisible by three have different lengths. Hence
we get infinitely many graphs [], as desired by repeating the above con-
struction. Similarly if we construct /", from I, by replacing each vertex by
a wheel with five vertices (i.e., K,+C,) and '} from I', by replacing each
vertex by a K; and if we repeat these constructions, then we get infinitely
many graphs [], and infinitely many graphs [], as desired.
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