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86. Information and Statistics. II

By Yukiyosi KAWADA
Faculty of Science, University of Tokyo

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1987)

This is a continuation of Kawada [0]. We use the same notations.
II. L-sets and informations. 1. Let p=(p,,---,,) and ¢=(q,, - - -,
q,.) be probability distributions. We call the set

(9) Lip,g ={(m, y)\x—_— ;CZZ oDy y:lé Qe 0, <1, k=1, - -, m}

the Liapunov-set (simply L-set) of the pair (p,q). See Kudo [6], [7].

L(p, g) has the following properties:
(i) L(p,q)=4 (the diagonal segment joining (0, 0) and (1, 1)) if and only

if p=gq.
(ii) L(p,q) contains the points (0, 0) and (1,1).
(iii) L(p, g is contained in the square [0,1]Xx [0, 1].
(iv) L(p,q) is a symmetric convex set with the center (1/2,1/2).
(v) Let the indices of (p, ¢,) be so substituted that
0<(q,/P) <@/ P)E - - Z(Q/PR) S0
holds. Then
L(p, 9 ={(x, ) |p(@) Sy <¥(), 0<2 <1}
where ¢(x) is a polygon with m+1 vertices
(O, O), (pu Q1)’ (px+p2: q1+Q2)y R} (px‘l" cte +pm—1’ Q1+ ce +qm_1), (1’ 1)
and (x) is a polygon with m+1 vertices
0,0), Pons @)y DA Pn1s A+ Tm-r)s -+ -
PnAPnst -+ D0 Qut Q- -+, (L, D).

Theorem 6. A function I(p, g) for any pair of finite probability distri-
butions (p, q) is an information if and only if
(i) L(p,9=4=I1(p,9)=0,
(ii) L(p, =L, ¢)=>1(p,=1(p',q),
(i) Lp,2L(p’,¢)=>1(p, ) >1(p', q).

Namely, an information I is characterized by the property that I is a
monotone functional of the family of all L-sets with I=0 for L=A4.

2. (i) We can characterize a fundamental information I geometri-
cally as

(10) I«(p,q) =JC K(dyp/dx)dx

where K(x) is a non-negative differentiable function with K(1)=K'(1)=0,
K'"(#)>0, ¢(x) is the polygon defined as above and the integral is the curvi-
linear integral along the polygon C: y=o¢(x).

In particular, if we put
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K@)=v1+a'—(z+1)/V 2,
then I.(p, g)=(the length of the polygon C)—+/ 2.
Thus we call the information (10) of the type of arc-length.
We can define several other types of informations gecmetrically.
(ii) Type of area of L-sets. Let
(@h)) I,(p, q)=the area of L-set L(p, g).
Then I, is an information by Theorem 6. We can write also

Lwo=(5 3 0= pi0h]) /2.

If we take a continucus function f(x,y) defined on 0<x<1, 0<y<1 and
positive for 0 <<z <1, 0<y <1, then

(12) Loo=[[ s dsdy

D,q
is also an information by Theorem 6. We call these informations I, , of
the tpye of area.

(iii) Type of breadth of L-sets. Let B,(L) be the breadth of the
convex set L(p, g) in the direction § with the x-axis, and f(6) (0<6<=n) be
any positive continuous function. Then

(13) I, (p, q)= % [ " (BAL)—B(4)f0)ds

is an information by Theorem 6. We call these informations I, ; of the
type of breadth. Notice that d(p, q)=B,,,.(L).

3. Now we introduce the concept of completeness of a family of infor-
mations after Kudo [7].

Definition 3. A family of informations {I,(p, ¢) | @ € 2} is called weakly
complete if I.(p,q)=I1,(p’,q) for all we 2 implies L(p,q)=L(p’,q’), and is

called strongly complete if 1(p,q)=1.p’,q) for all we Q implies L(p,q)
DL(p', q).

Any strongly complete family is evidently weakly complete, but the

converse does not hold in general as shown by a counter example by K.
Iseki in [7].

Theorem 7. (i) The family of informations of the type of area:

{Iff’f)(p, D= f L(M) stytde dyi, §=0,1,2, - - }
18 weakly complete, but not strongly complete.
(i) The family of informations of the type of area
{IA,f(p, 9 =” S, p)dxdy| f(x, ) =0 and continuous}
18 strongly complete. e

Theorem 8. (i) The family of informations of the type of arc-
length (i.e. fundamental informations)

{I'(p,@)|a<2<a+e}  (@>0,e>0)
and

{IHp, @ a—e<pu<a} 1/2za>e>0)
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are both weakly complete, but not strongly complete.
(ii) The family of informations of the type of arc-length
(1o, @ = 3 K@,/ )| KO =KD =0, K"(@)>0 for &>0}
18 strongly complete.

III. Applications to statistics. 1. H. Akaike [1], [2] established the
theory of AIC (Akaike information criterion), whose direct application
gives a method of model selection from the standpoint of prediction. There
he used as a basic tool the Kullback-Leibler information I.,. Here we
shall show that a similar results can be obtained if we use a regular infor-
mation I, which we shall define below, instead of I,;.

Definition 4. An information I is called regular if the following two
conditions (A) and (B) hold.

(A) Let p=(p1, v "Pm), q=(q1) tt qm) and q0=(qgr c 7qgn) be finite
probability distributions, and put

Pe=q+Ue, G=q+v. (k=1,-.-,m)

U+ +u,=0, v+ +0,=0.
For |u,|<e, |vi <e (k=1, ---,m) I(p,q) is three times differentiable with
respect to (u, -+, Up_y, Vyy -+ 5 Vpy) @nd

(14) I, 0= % > -;T(uk—vk)we, R=0()
= k

holds, where « is a positive constant. « is called the nwvariant of I.
(B) If we fix g then for any p the inequality
0<I(p,q)<c(q)
holds, where ¢(q) is a certain constant. By (8) any differentiable funda-
mental information satisfies the condition (A), and we can easily verify
that I*(—(1/2) <2< o) satisfies the condition (B).

Let ¢°=(q?, - - -, ¢°) be a probability distribution on m events (£, - - -,
E,). Suppose that the events E,, -. -, E, occur N,,---, N, times respec-
tively in w (n=N,+ - . - +N,,) independent trials, and put
(15) P=(N,/n, ---,N,/n).

Theorem 9. Let I be a regular information with the invariant a.
Then as n—co the random variable (2n/a)(p, ¢°) converges in distribution
to the chi-square distribution 12,_, with m—1 degrees of freedom. Moreover,

lim 2n/a)E(I(P, ¢°)) =m—1

n-—>co

holds, where E means the expectation of the random variable.

2. Now suppose that we are given a family of distributions g(6)
=(g,(®, - - -, q,.(0), 0=, --+,0,) () with r continuous parameters.
We assume that the unknown true probability distribution ¢° is contained
in this family as ¢°=¢(6°), =99, - - -,6%). We define the random probability
distribution P by (15) after # independent trials. For this value P, choose
the value of parameters §=(4,, - - -, §,) such that I(P, q(9)) takes its minimum
at #=4. We can consider 4 also as a random vector.
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Theorem 10. As n—oo the random vector.
1/_7@—(0‘1‘—0?’ ] ér—ﬂﬁ)
converges in distribution to the r-dimensional normal distribution N((0, - - -,
0), al~Y) with the mean vector (0, - - -, 0) and the variance matriz «l ', where

o'l
1=((_.__> ) —0Q1Q,
00,00, /o=00/1,i=1,.r aQ-‘Q

Q=0 IV ;) =0 ©=0q,/30,.

Theorem 11. As n—co the random variable (2n/a)(I(P, ¢°)—I(P, ¢()))
converges in distribution to the chi-square distribution X2 with r degrees
of freedom, and (2n/a)(I(P, g(f)) itself converges in distribution to the chi-
square distribution X2,_,_, with m—1—r degrees of freedom.

3. Now let g°=(q, - - -, q%) be unknown true probability distribution
of the events (K, - - - E,), and suppose that we obtain the events E,, - - -, E,,,
Ny, - - -, N, times respectively in n (n=n,+ - - - +n,,) independent trials. Put
p’=mn/n, -, n,/n).

Let 2" ={q(0)=(q,(0), - - -, 2.0} be a model for ¢° which contains
¢°=4¢(¢°). Assume that I is a regular information, and 4 is the value of ¢
in a neighbourhood of ¢° such that I(p°, ¢(d)) is the minimum. Now define

(16) AIC(QD)=2n[a)I(p°, q(f))+2r
after Akaike [1],[2]. Akaike’s method of selection of model is as follows.
Suppose we are given several models for ¢°. i.e. 2V, ..., 09,  After

n independent trials we obtain p° as above. Compare the values AIC(2¢%)
(t=1, - --,8). Choose the model 2 for which AIC(Q?) takes the minimum
among s values. :

This method depends on the following theorem in prediction theory.
Namely, we repeat n* new independent trials, for which the events £, - - -,
E,, occur N¥, ..., Nt times (n*=N¥+ - - .+ N}) respectively. Put

P*=(N¥[n*, ---,N}/n*).

The mean value E*(I(P*,q(§)) may be called the mean information in
prediction.

Theorem 12.

AIC(Q)=2n/)E*(I(P*, q(0))+ R, + R,
where
R,=2n/a)U(p’ ¢") — E*I(P*, q°)

depends only on the value p°, and R, is a random variable with E(R,)=0.
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