81. A Convergence of Solutions of an Inhomogeneous Parabolic Equation

By Kunio Nishioka
Department of Mathematics, Tokyo Metropolitan University
(Communicated by Kôsaku Yosida, m. J. A., Oct. 12, 1987)

Our aim in this paper is to prove that a compensated solution (see (4)) of an inhomogeneous parabolic equation (1) converges to a classical solution of an elliptic equation (2) as $t \rightarrow \infty$.

$$
\begin{equation*}
\partial_{t} u=\left(\boldsymbol{A}+\sum_{|\alpha|=2 q} B_{a}(x) \partial^{a}\right) u+f(x), t>0, x \in \boldsymbol{R}^{d} ; u(0, x)=0 . \tag{1}
\end{equation*}
$$

(2)

$$
\left(A+\sum_{|a|=2 q} B_{a}(x) \partial^{a}\right) v+f(x)=c_{f}, \quad x \in \boldsymbol{R}^{d} .
$$

Where

$$
A \equiv(-1)^{q-1} \rho \sum_{k=1}^{d} \frac{\partial^{2 q}}{\partial x_{k}^{2 q}}
$$

with a natural number q and a complex number ρ such that $\operatorname{Re} \rho>0 ; B_{a}(x)$'s are functions in a certain class $\mathbb{P}^{0}\left(\boldsymbol{R}^{d}\right)$ and "smaller" than $\operatorname{Re} \rho ; f(x)$ is in a class $\mathscr{F}^{0}\left(\boldsymbol{R}^{d}\right)$; and c_{f} is a constant determined from f.

As easily seen, the solution u of (1) possibly blows up as $t \rightarrow \infty$ (see after Proposition 2). Hence we shall consider the compensated solution \tilde{u} instead of u itself. \tilde{u} is written by a Girsanov type formula given in [1], [2], and it enables us to prove that \tilde{u} converges to solution of (2).

1. We shall state the notations briefly. More precise descriptions can be found in [1], [2].

For multiindex a and $x \in \boldsymbol{R}^{d}$, we put

$$
x^{a} \equiv \prod_{k=1}^{d} x_{k}^{a_{k}} \quad \text { and } \quad \partial^{a} \equiv \prod_{k=1}^{d}\left(\frac{\partial}{\partial x_{k}}\right)^{a_{k}}
$$

For a non-negative number $\kappa, \mathscr{M}^{\kappa}\left(\boldsymbol{R}^{d}\right)$ is a Banach space consisting of all complex valued measures $\mu(d \xi)$ on \boldsymbol{R}^{d} with $\|\mu\|_{k} \equiv \int(1+\mid \xi)^{x}|\mu|(d \xi)<\infty$, and $\mathscr{I}^{k}\left(\boldsymbol{R}^{d}\right)$ is a Banach space of all Fourier transforms of $\mathscr{M}^{k}\left(\boldsymbol{R}^{d}\right)$, i.e. $f(x)$ $=\int \exp \{i \xi \cdot x\} \mu_{f}(d \xi), \mu_{f} \in \mathscr{M}^{\varepsilon}\left(\boldsymbol{R}^{d}\right)$, and we define as $\|f\|_{k} \equiv\left\|\mu_{f}\right\|_{c} . \quad f \in \mathscr{I}^{0}\left(\boldsymbol{R}^{d}\right)$ is bounded and uniformly continuous, and sup $\operatorname{su}_{x}|f(x)| \leqq\|f\|_{0}$.

Put $\boldsymbol{R}^{+} \equiv(0, \infty)$, and $\mathscr{M}^{k}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)$ denotes a set of all complex valued measures $\mu(t, d \xi), t \in \boldsymbol{R}^{+}$, such that (i) $\mu \in \mathscr{M}^{\star}\left(\boldsymbol{R}^{d}\right)$ for each $t \in \boldsymbol{R}^{+}$, and (ii) $\|\mu(t, \cdot)-\mu(s, \cdot)\|_{k} \rightarrow 0$ as $t \rightarrow s$ on $\boldsymbol{R}^{+} . \quad \mathscr{P}^{k}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)$ is a space consisting of all Fourier transforms of $\mathscr{M}^{\varepsilon}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)$, i.e.

$$
g(t, x)=\int \exp \{i \xi \cdot x\} \mu_{g}(t, d \xi), \quad \mu_{g} \in \mathscr{M}^{k}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)
$$

2. By a slight modification of the argument in [2], we get:

Proposition 1. Assume that (i) f and B_{a} 's on (1) are in $\mathscr{F}^{0}\left(\boldsymbol{R}^{d}\right)$, and (ii) $\Sigma_{|a|=2 q}\left\|B_{a}\right\|_{0}<\operatorname{Re} \rho$. Then (1) possesses a unique classical solution u such
that $\partial_{t} u, \partial^{a} u \in \mathscr{F}^{0}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)$ for $|a| \leqq 2 q$.
On the other hand, for a homogeneous parabolic equation
(3) $\quad \partial_{t} v=A v+\sum_{|a|=2 q} B_{a}(x) \partial^{a} v, \quad t>0, \quad x \in R^{d} ; \quad v(0, x)=f(x)$, we know the following result (see [2,3]):

Proposition 2. Under the hypotheses in Proposition 1, (3) possesses a unique wide sense solution v, and $\lim _{t \rightarrow \infty}\left\|v(t, \cdot)-c_{f}\right\|_{0}=0$ for a constant. c_{f}.

The solution $u(t, x)$ of (1) is not necessarily finite, when t tends infinity. For instance, if $f(x)=c$ for a non zero constant c, then $u(t, x)=c t$, and $|u| \rightarrow \infty$ as $t \rightarrow \infty$.

Therefore, we introduce a compensated solution $\tilde{u}(t, x)$ instead of u itself :

$$
\begin{equation*}
\tilde{u}(t, x) \equiv u(t, x)-\sum_{|a| \leqq 2 q-1} \frac{x^{a}}{|a|!} \partial^{a} u(t, 0) \tag{4}
\end{equation*}
$$

Our assertion in this paper is the following.
Theorem. Under the hypotheses in Proposition 1, as $t \rightarrow \infty, \tilde{u}(t, x)$ converges to a classical solution of (2) uniformly on compact sets, where c_{f} is a constant given in Proposition 2.

Corollary. If the measure μ_{f} corresponding to f is absolutely continuous in the Lebesgue measure, i.e.

$$
f(x)=\int \exp \{i \xi \cdot x\} \hat{f}(\zeta) d \zeta \quad \text { for } \hat{f} \in L_{1}\left(\boldsymbol{R}^{d}\right)
$$

then c_{f} in Proposition 2 and Theorem is zero.
3. We denote by $\mu_{f}(d \zeta)$ and $\nu_{a}(d \xi),|a|=2 q$, the measures corresponding to f and B_{a} 's, respectively. Define

$$
\begin{gathered}
\langle y\rangle \equiv\left(\sum_{k=1}^{d} y_{k}^{2 q}\right)^{1 / 2 q} \quad \text { for } y \in R^{d}, \\
H(1) \equiv \zeta \quad \text { and } H(j) \equiv \zeta+\xi^{(1)}+\cdots+\xi^{(j-1)} \quad \text { for } j \geqq 2 .
\end{gathered}
$$

Let u be the solution of (1) given in Proposition 1, and let v be that of (3) in Proposition 2, then $u(t, x)=\int_{0}^{t} v(s, x) d s$. As in [2], [3], we can write

$$
\begin{align*}
\partial_{t} u(t, x)= & v(t, x)=\int \mu_{f}(d \zeta) \exp \left\{i \zeta \cdot x-\rho\langle\zeta\rangle^{2 q} t\right\} \tag{5}\\
& +\sum_{n=1}^{\infty} \sum_{\left|a^{(1)}\right|=2 q} \cdots \sum_{\left|a^{(n)}\right|=2 q} I\left(t, x ; a^{(1)}, \cdots, a^{(n)}\right)
\end{align*}
$$

where, with the convention $s_{0} \equiv t$,

$$
\begin{align*}
& I\left(t, x ; a^{(1)}, \cdots, a^{(n)}\right) \equiv \int_{t>s_{1}>\ldots>s_{n}>0} d s_{1} \cdots d s_{n} \int \mu_{f}(d \zeta) \tag{6}\\
& \quad \times \int \nu_{a^{(1)}}\left(s_{1}, d \xi^{(1)}\right) \cdots \int \nu_{a^{(n)}}\left(s_{n}, d \xi^{(n)}\right) \exp \{i H(n+1) \cdot x\} \\
& \quad \times\left(\prod_{j=1}^{n}(i H(j))^{a(j)} \exp \left\{-\rho\langle H(j)\rangle^{2 q}\left(s_{j-1}-s_{j}\right)\right\}\right) \exp \left\{-\rho\langle H(n+1)\rangle^{2 q} s_{n}\right\} .
\end{align*}
$$

4. Using (5) and (6), we shall prove the theorem and the corollary in the following four steps.

Step 1. First we take a sequence $\left\{f^{(m)}\right\}, m=1,2, \cdots$, in $\mathscr{F}^{2 q}\left(\boldsymbol{R}^{d}\right)$ such that $\left\|f-f^{(m)}\right\|_{0} \rightarrow 0$ as $m \rightarrow \infty$. By Proposition 1, we have a classical solution $u^{(m)}$ of

$$
\begin{equation*}
\partial_{t} u^{(m)}=A u^{(m)}+\sum_{|a|=2 q} B_{a} \partial^{a} u^{(m)}+f^{(m)} ; \quad u^{(m)}(0, x)=0 . \tag{7}
\end{equation*}
$$

$\left\{u^{(m)}\right\}$ converges to u, and $\partial_{t} \partial^{a} u^{(m)}$ are in $\mathscr{P}^{0}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{a}\right)$ for $|a| \leqq 2 q$, since $f^{(m)}$
$\in \mathscr{P}^{2 q}\left(\boldsymbol{R}^{d}\right)$. We define $\tilde{u}^{(m)}$ as (4) with $u^{(m)}$ in the place of u.
Step 2. We denote by $\mu_{f}^{(m)} \in \mathscr{M}^{2 q}\left(\boldsymbol{R}^{d}\right)$ the corresponding measure to $f^{(m)}$, and define $I^{(m)}\left(t, x ; a^{(1)}, \ldots, a^{(n)}\right)$ as (6) with $\mu_{f}^{(m)}$ in the place of μ_{f}. Put

$$
\begin{aligned}
& \tilde{I}^{(m)}\left(t, x ; a^{(1)}, \cdots, a^{(n)} \equiv I^{(m)}\left(t, x ; a^{(1)}, \cdots, a^{(n)}\right)\right. \\
&-\sum_{|\beta| \leqq 2 q-1} \frac{x^{\beta}}{|\beta|!} \partial^{\beta} I^{(m)}\left(t, 0 ; a^{(1)}, \cdots, \alpha^{(n)}\right),
\end{aligned}
$$

and this makes sense, because $\mu_{f}^{(m)} \in \mathscr{M}^{2 q}\left(\boldsymbol{R}^{d}\right)$. Noticing that $\left|y^{a}\right| \leqq\langle y\rangle^{2 q}$ for $|a|=2 q$, we get

$$
\begin{aligned}
& \int_{0}^{\infty} d s \sup _{|x| \leqq K}\left|\partial^{\beta} \tilde{I}^{(m)}\left(s, x ; a^{(1)}, \cdots, a^{(n)}\right)\right| \\
& \quad \leqq C(1+K)^{2 q} \frac{\left\|f^{(m)}\right\|_{0}}{(\operatorname{Re} \rho)^{n+1}}\left\|B_{a^{(1)}}\right\|_{0} \cdots\left\|B_{a^{(n)}}\right\|_{0}, \quad|\beta| \leqq 2 q
\end{aligned}
$$

where C is a positive constant depending only on q and d. Put $\theta \equiv$ $\sum_{|a|=2 q}\left\|B_{a}\right\|_{0} / \operatorname{Re} \rho$, then (4) through (6) derive

$$
\begin{equation*}
\int_{0}^{\infty} d s \sup _{|x| \leqq K}\left|\partial_{t} \partial^{\beta} \tilde{u}^{(m)}(\mathrm{s}, x)\right| \leqq \frac{C(1+K)^{2 q}\left\|f^{(m)}\right\|_{0}}{\operatorname{Re} \rho(1-\theta)}, \quad|\beta| \leqq 2 q \tag{8}
\end{equation*}
$$

Now $\tilde{u}^{(m)}(t, x)$, together with the special derivatives up to the order $2 q$, converges to a certain function $\tilde{u}_{\infty}^{(m)}(x)$ uniformly on compact sets as $t \rightarrow \infty$, because

$$
\begin{aligned}
& \sup _{|x| \leqq K}\left|\partial^{\beta} \tilde{u}^{(m)}(T, x)-\partial^{\beta} \tilde{u}^{(m)}\left(T^{\prime}, x\right)\right| \\
& \quad=\int_{T^{\prime}}^{T} d s \sup _{|x| \leqq K}\left|\partial_{t} \partial^{\beta} \tilde{u}^{(m)}(s, x)\right|, \quad|\beta| \leqq 2 q
\end{aligned}
$$

on which (8) implies that the right hand side vanishes as $T, T^{\prime} \rightarrow \infty$.
Step 3. We make a similar calculation as in Step 2, and get

$$
\begin{equation*}
\sup _{|x| \leqq K}\left|\partial^{\beta} \tilde{u}^{(m)}(t, x)-\partial^{\beta} \tilde{u}(t, x)\right| \leqq \frac{C(1+K)^{2 q}\left\|f^{(m)}-f\right\|_{0}}{\operatorname{Re} \rho(1-\theta)} \tag{9}
\end{equation*}
$$

for $|\beta| \leqq 2 q$. In addition, we also have

$$
\begin{equation*}
\sup _{t>0}\left\|\partial_{t} u^{(m)}(t, \cdot)-\partial_{t} u(t, \cdot)\right\|_{0} \leqq \frac{C\left\|f^{(m)}-f\right\|_{0}}{\operatorname{Re} \rho(1-\theta)} \tag{10}
\end{equation*}
$$

Since $\partial_{t} u=v$, (10) and Proposition 2 yield
(11) $\quad \lim _{t, m \rightarrow \infty}\left\|\partial_{t} u^{(m)}(t, \cdot)-c_{f}\right\|_{0}=0 \quad$ for a constant c_{f}.

Noticing that $\partial^{\beta} \tilde{u}^{(m)}=\partial^{\beta} u^{(m)}$ for $|\beta|=2 q$, we let $t, m \rightarrow \infty$ on (7). Then the theorem follows from a combination of the conclusion at Step 2 with (9) and (11).

Step 4. As in [3], the hypothesis on the corollary implies that $c_{f}=0$ on Proposition 2, and the proof is completed.

References

[1] Nishioka, K.: Stochastic calculus for a class of evolution equations. Japan. J. Math., 11, 59-102 (1985).
[2] -: A stochastic solution of a high order parabolic equation. J. Math. Soc. Japan, 39, 209-231 (1987).
[3] -: Large time behavior of a solution of a parabolic equation. Proc. Japan Acad., 62A, 371-374 (1986).

