78. Information and Statistics. I

By Yukiyosi KAWADA Department of Mathematics, Faculty of Science, University of Tokyo

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 14, 1987)

This short note is a summary of an axiomatic consideration of an information and its applications to statistics.¹⁾

I. Axioms of an information 1. Under an information we usually understand the Kullback-Leibler information (1951):

(1)
$$I_{KL}(p,q) = \sum_{k=1}^{m} p_k \log(p_k/q_k)$$

where $p = (p_1, \dots, p_m)$, $q = (q_1, \dots, q_m)$ are two finite probability distributions. There are, however, similar known functions I(p, q) which may be also called informations. For example,

(2)
$$I_P(\mathbf{p}, \mathbf{q}) = \left(\sum_{k=1}^m p_k^2 q_k^{-1}\right) - 1$$
 (Pearson's information, 1900)
which can be expressed as $\left(\sum_{k=1}^m (n - nq)^2/nq\right)/n$ when $\mathbf{r} = (n / n + nq)^2$

which can be expressed as $(\sum_{k=1}^{m} (n_k - nq_k)^2 / nq_k) / n$ when $\mathbf{p} = (n_1/n, \dots, n_m/n)$ $(n = n_1 + \dots + n_m)$, and

(3)
$$I_{\kappa}(\boldsymbol{p},\boldsymbol{q}) = 2\left(1 - \sum_{k=1}^{m} p_{k}^{1/2} q_{k}^{1/2}\right)$$
 (Kakutani's information, [5], 1948).

These are included as special cases of the family

$$(4) I^{\lambda}(\boldsymbol{p},\boldsymbol{q}) = \frac{1}{\lambda} \left\{ \left(\sum_{k=1}^{m} p_{k}^{1+\lambda} q_{k}^{-\lambda} \right) - 1 \right\}, \quad -\frac{1}{2} \leq \lambda < \infty, \quad \lambda \neq 0,$$

namely, $I_P = I^1$, $I_K = I^{-1/2}$, and we define $I^0 = I_{KL}$.

We can easily see that

$$I^{\lambda}(\boldsymbol{p},\boldsymbol{q}) \leq I^{\mu}(\boldsymbol{p},\boldsymbol{q}) \quad \text{for } \lambda < \mu$$

and

$$\lim_{n\to\infty} I^{\lambda_n}(\boldsymbol{p},\boldsymbol{q}) = I^{\lambda_0}(\boldsymbol{p},\boldsymbol{q}) \qquad \text{for } \lim_{n\to\infty} \lambda_n = \lambda_0.$$

We call I^{0} the *parabolic* information, $I^{\lambda}(\lambda > 0)$ a *hyperbolic* information and $I^{-\mu}(1/2 \ge \mu > 0)$ an *elliptic* information.

Remark. (i) The function $I^{-\mu}(p,q)$ for $1/2 \ge \mu > 0$ was introduced by several authors [4], [7] and the general case was also considered in [9].

(ii) In the definition (4) we can extend the value λ for $\lambda < -1/2$ formally. Then we have

$$I^{-\lambda}(p, q) = -rac{\lambda - 1}{\lambda} I^{\lambda - 1}(q, p), \quad \lambda > 1$$

 $I^{-1}(p, q) = 0$
 $I^{-\mu}(p, q) = rac{1 - \mu}{\mu} I^{\mu - 1}(q, p), \quad 1/2 < \mu < 1$

¹⁾ The details will be published in the Proceedings of the Institute of Statistical Mathematics (Tōkei Sūri) in Japanese.

Theorem 1. The function $I^{\lambda}(\mathbf{p}, \mathbf{q}) = I^{\lambda}(p_1, \dots, p_m; q_1, \dots, q_m) (-1/2 \leq \lambda)$ $<\infty$) $(p_k \ge 0, q_k \ge 0, p_1 + \dots + p_m = q_1 + \dots + q_m = 1, m = 1, 2, \dots)$ satisfies the following conditions: (I) Reducibility. If $p_m = q_m = 0$, then $I^{\lambda}(p_{1}, \cdots, p_{m}; q_{1}, \cdots, q_{m}) = I^{\lambda}(p_{1}, \cdots, p_{m-1}; q_{1}, \cdots, q_{m-1}).$ (II) Symmetry. $I^{\lambda}(p_1, \dots, p_m; q_1, \dots, q_m) = I^{\lambda}(p_{i_1}, \dots, p_{i_m}; q_{i_1}, \dots, q_{i_m})$ for any substitution (i_1, \dots, i_m) of $(1, \dots, m)$. (III) Non-negativity. $I^{\lambda}(\mathbf{p},\mathbf{q}) \geq 0$ for any p, q, and the equality holds if and only if p = q. (IV) Convexity and (V) Invariance. $I^{2}(p_{1}+p_{2}, p_{3}, \dots, p_{m}; q_{1}+q_{2}, q_{3}, \dots, q_{m})$ $\leq I^{\lambda}(p_1, p_2, \cdots, p_m; q_1, q_2, \cdots, q_m)$ holds in general and the equality holds if and only if $q_1/p_1 = q_2/p_2$. (VI) Additivity and pseudo-additivity. Let $p \otimes p'$, $q \otimes q'$ be the direct product distributions. If $\lambda = 0$ the additivity holds: $I^{0}(\mathbf{p}\otimes\mathbf{p}', \mathbf{q}\otimes\mathbf{q}') = I^{0}(\mathbf{p}, \mathbf{q}) + I^{0}(\mathbf{p}', \mathbf{q}').$ In general the pseudo-additivity holds: $I^{\lambda}(\boldsymbol{p}\otimes\boldsymbol{p}',\boldsymbol{q}\otimes\boldsymbol{q}')=I^{\lambda}(\boldsymbol{p},\boldsymbol{q})+I^{\lambda}(\boldsymbol{p}',\boldsymbol{q}')+\lambda I^{\lambda}(\boldsymbol{p},\boldsymbol{q})\cdot I^{\lambda}(\boldsymbol{p}',\boldsymbol{q}').$

(VII) Continuity. If $\lim_{n\to\infty} p_n = p_0$, and $\lim_{n\to\infty} q_n = q_0$, then $\lim_{n\to\infty} I^2(p_n, q_n) = I^2(p_0, q_0).$

(VIII) Relativity. Let $p^* = (p_{kj})$, $q^* = (q_{kj})$ $(k=1, \dots, m; j=1, \dots, r_k)$ be probability distributions. Put $p_k = \sum_{j=1}^{r_k} p_{kj}$, $q_k = \sum_{j=1}^{r_k} q_{kj}$ and $p = (p_k)$, $q = (q_k)$. Define the conditional probability: $p^{(k)} = (p_{kj}/p_k)$, $q^{(k)} = (q_{kj}/q_k)$ $(j=1, \dots, r_k)$ for $k=1, \dots, m$. Then

$$I^{\lambda}(p^{*},q^{*}) = I^{\lambda}(p,q) + \sum_{k=1}^{m} p_{k}^{1+\lambda} q_{k}^{-\lambda} I^{\lambda}(p^{(k)},q^{(k)}).$$

For $\lambda = 0$ these properties are proved in Kullback [8].

Remark. We see easily that (VIII) implies (VI), and (III) and (VIII) imply (IV) and (V).

Theorem 2. Let us fix a constant λ $(-1/2 \leq \lambda < \infty)$ and assume that a function $I(p_1, \dots, p_m; q_1, \dots, q_m)$ satisfies (I) reducibility, (II) symmetry, (III) non-negativity, (VII) continuity, and (VIII) relativity. Then

$$I(\boldsymbol{p},\boldsymbol{q}) = cI^{\lambda}(\boldsymbol{p},\boldsymbol{q})$$

for some constant c>0.

2. Now we shall consider about "information" which we define by the following system of axioms.

Definition 1. Let $p = (p_1, \dots, p_m)$, $q = (q_1, \dots, q_m)$ $(\sum_{k=1}^{m} p_k = \sum_{k=1}^{m} q_k = 1)$ be finite probability distributions $(m = 1, 2, \dots)$. A function $I(p, q) = I(p_1, \dots, p_m; q_1, \dots, q_m)$ is called an *information* if the function I satisfies the axioms: (I) reducibility, (II) symmetry, (III) non-negativity, (IV) convexity, and (V) invariance.

The functions $I^{\lambda}(p,q)$ $(-1/2 \le \lambda < \infty)$ are informations in the above

sense. We can also define an information in the form $I(p,q)=F(I_1(p,q), \dots, I_r(p,q))$ by using a suitable function $F(x_1, \dots, x_r)$ from known informations I_1, \dots, I_r . For example, $I=aI_1+bI_2$, $I=aI_1^2+bI_2^2$, a>0, b>0, etc. In particular,

(5)₁
$$\tilde{I}^{\lambda}(\boldsymbol{p},\boldsymbol{q}) = \frac{1}{\lambda} \log (1 + \lambda I^{\lambda}(\boldsymbol{p},\boldsymbol{q})), \quad \lambda > 0,$$

(5)₂
$$\tilde{I}^{-\mu}(p,q) = \frac{-1}{\mu} \log (1 - \mu I^{-\mu}(p,q)), \quad 0 < \mu < \frac{1}{2}$$

are also informations which satisfy the additivity.

Remark. (i) $\tilde{I}^{-\mu}$ was introduced by Kudō [7] (1953) and \tilde{I}^{λ} and $\tilde{I}^{-\mu}$ were also considered by Rényi [10] (1961).

(ii) The functions $d(p, q) = (\sum_{k=1}^{m} |p_k - q_k|)/\sqrt{2}$ and $D(p, q) = (\sum_{k=1}^{m} (p_k - q_k)^2)^{1/2}$ are not informations in the above sense.

3. Definition 2. A continuous information is called fundamental if I(p,q) can be expressed as

 $I(\boldsymbol{p},\boldsymbol{q}) = L(p_1,q_1) + \cdots + L(p_m,q_m)$

by a continuous function L(x, y) defined for $0 \leq x \leq 1$ and $0 \leq y \leq 1$.

For example, I_{KL} , I_P , I_K , I^{λ} are fundamental, but \tilde{I}^{λ} , $\tilde{I}^{-\mu}$ are not fundamental.

Theorem 3. In order that a function I(p,q) defined by (6) is an information it is necessary and sufficient that

(i) L(0,0)=0, L(1,1)=0,

(ii) if $p_1/q_1 = p_2/q_2 = (p_1 + p_2)/(q_1 + q_2)$ $(p_1 + p_2 \le 1, q_1 + q_2 \le 1)$, then $L(p_1, q_1) + L(p_2, q_2) = L(p_1 + p_2, q_1 + q_2)$,

(iii) if $p_1 + p_2 \leq 1$, $q_1 + q_2 \leq 1$, then

 $L(p_1, q_1) + L(p_2, q_2) \ge L(p_1 + p_2, q_1 + q_2)$

and the equality holds if and only if $p_1/q_1 = p_2/q_2$.

Theorem 4. A fundamental information I(p,q) can be expressed in the form

(7)
$$I(\boldsymbol{p},\boldsymbol{q}) = \sum_{k=1}^{m} p_k K(q_k/p_k)$$

by a non-negative strictly convex function K(x) with K(1)=0, and conversely the function defined by (7) is a fundamental information. If we assume furthermore the differentiability of K(x), such function K(x) is uniquely determined by I.

Examples.

$$I^{0}(p,q) = \sum_{k=1}^{m} p_{k} K^{0}(q_{k}/p_{k}), \qquad K^{0}(x) = -\log x + (x-1) \ge 0.$$
$$I^{\lambda}(p,q) = \sum_{k=1}^{m} p_{k} K^{\lambda}(q_{k}/p_{k}), \quad \lambda \neq 0, \quad K^{\lambda}(x) = (x^{-\lambda}-1)/\lambda + (x-1) \ge 0.$$

Theorem 5. Let I(p,q) be a differentiable fundamental information (i.e. L(x, y) in (6) be three times differentiable in x and y).

(i) If I(p,q) satisfies the additivity:

$$I(p\otimes p', q\otimes q') = I(p, q) + I(p', q'),$$

No. 7]

then we have

$$I(p,q) = c_1 I^0(p,q) + c_2 I^0(q,p), \quad c_1 \ge 0, \quad c_2 \ge 0.$$
(ii) If $I(p,q)$ satisfies the relation
$$I(r \otimes r', c \otimes q') = I(r,q) + I(r',q') + I(r,q), \quad I(r',q) \le 0.$$

$$I(p \otimes p', q \otimes q') = I(p, q) + I(p', q') + I(p, q) \cdot I(p', q')$$

then we have

$$I(p,q) = \lambda I^{\lambda}(p,q), \quad or = \lambda I^{\lambda}(q,p)$$

by some $\lambda > 0$.

(iii) If I(p,q) satisfies the relation

$$I(p \otimes p', q \otimes q') = I(p,q) + I(p',q') - I(p,q) \cdot I(p',q')$$

then we have

$$I(p,q) = \mu I^{-\mu}(p,q), \quad or = \mu I^{-\mu}(q,p)$$

by some μ (1/2 $\geq \mu > 0$).

Remark. Rényi [10] characterized I^0 , \tilde{I}^{λ} and $\tilde{I}^{-\mu}$ by different axioms.

Let *I* be a differentiable fundamental information (7). Let $p=(p_k)$, $q=(q_k)$ and $q^0=(q_k^0)$ be probability distributions and put $p_k=q_k^0+u_k$, $q_k=q_k^0+v_k$ $(k=1, \dots, m)$.

If $|u_k| < \varepsilon$, $|v_k| < \varepsilon$ $(k=1, \dots, m)$, then we have

(8)
$$I(\mathbf{p}, \mathbf{q}) = \frac{\alpha}{2} \sum_{k=1}^{m} \frac{1}{q_{k}^{0}} (u_{k} - v_{k})^{2} + R, \quad R = O(\varepsilon^{3}),$$

where $\alpha = (d^2 K / dx^2)(1) \ge 0$. We call α the *invariant* of *I*.

The invariant α of I^{λ} is given by $\alpha(I^{\lambda}) = 1 + \lambda \ (-1/2 \leq \lambda < \infty)$.

References

- H. Akaike: Information theory and an extension of the maximum likelihood principle. 2nd Internat. Symp. on Information Theory, Akademiai Kiado, Budapest, pp. 267-281 (1973).
- [2] —: A new look at the statistical model identification. IFEE Trans. Automatic Control, AC-19, pp. 716-723 (1974).
- [3] S. M. Ali and S. D. Silvey: A general class of divergence of one distribution from another. J. Roy. Statist. Soc., B 28, 131-142 (1966).
- [4] I. Csizár: Information measures; a critical survey. Trans. 7-th Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and of the 1974 European Meeting of Statisticians, vol. B, pp. 73-86 (1978).
- [5] S. Kakutani: On equivalence of infinite product measures. Ann. of Math., 49, 214-224 (1948).
- [6] H. Kudō: A theorem of Kakutani on infinite product measures. Nat. Sci. Rep. Ochanomizu Univ., 3, 10-22 (1952).
- [7] ——: Theory of time series and informations, and their applications, Chap. 2. Statistical Experiments and Their Informations. Nippon Kagaku-Gizyutu Renmei, pp. 104-124 (1953) (in Japanese).
- [8] S. Kullback: Information Theory and Statistics, Wiley (1959).
- [9] P. N. Rathie and P. L. Kannappan: A directed-divergence function of type β^* . Information and Control, **20**, 38-45 (1972).
- [10] A. Rényi: On measures of entropy and information. Proc. Fourth Berkeley Symposium Math. Statist. and Probability, 1, 547-561 (1961).