77. On Coefficients of Cyclotomic Polynomials

By Jiro Suzuki

Department of Mathematics, Sophia University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 14, 1987)

Let $c_i^{(n)}$ be the coefficient of X^i in the *n*-th cyclotomic polynomial; we put namely

$$\Phi_n(X) = \prod_{d \mid n} (1 - X^d)^{\mu(n/d)} = \sum_{i=0}^{\varphi(n)} c_i^{(n)} X^i$$
.

n being a positive integer and μ , φ denoting the Möbius and Euler functions, respectively. The purpose of this note is to prove the following.

Theorem. For any integer $s \in \mathbb{Z}$, there exist n, i such that $c_i^{(n)} = s$.

In other words, the range C of $c_i^{(n)}$ for $n=1,2,3,\cdots$ covers the whole set Z of integers. It is obvious that $C\supset \{-1,0,1\}$ as $c_1^{(1)}=-1,c_1^{(4)}=0,c_1^{(2)}=1$, for example. If $n=p^r$, p being a prime, we have $c_i^{(n)}=0$ or 1, and it is shown in [1] that $c_i^{(n)}\in \{-1,0,1\}$ if n=pq for distinct primes p,q. [2] describes a proof given by I. Schur of the fact that the absolute value of $c_i^{(n)}$ can be arbitrarily large, based on the following proposition (P) on the distribution of primes:

(P) Let t be any integer >2. Then there exist t distinct primes $p_1 < p_2 < \cdots < p_t$ such that $p_1 + p_2 > p_t$.

The proof of (P) is not given in [2], but it is easy to supplement it as shown below, and complete the proof of the theorem by a simple observation.

Proof of (P). Fix an integer t > 2 and suppose (P) to be false for t. Then for any t distinct primes $p_1 < p_2 < \cdots < p_t$, we should have $p_1 + p_2 \le p_t$ so that $2p_1 < p_t$ which would imply that the number of primes between 2^{k-1} and 2^k is always less than t. Then $\pi(2^k) < kt$ contrary to the prime number theorem.

Proof of Theorem. Let t be any odd integer >2 and $p_1 < p_2 < \cdots < p_t$ t primes satisfying $p_1 + p_2 > p_t$. Let $p = p_t$ and $n = p_1 p_2 \cdots p_t$, and consider $\Phi_n(X)$ mod. X^{p+1} after Shur. We have obviously

$$\begin{split} \varPhi_n(X) &\equiv \prod_{i=1}^t (1 - X^{p_i}) / (1 - X) \pmod{X^{p+1}}, \\ &\equiv (1 + X + \dots + X^p) (1 - X^{p_1} - \dots - X^{p_t}) \pmod{X^{p+1}}. \end{split}$$

This yields $c_p^{(n)} = -t+1$, $c_{p-2}^{(n)} = -t+2$, which shows $C \supset \{s \in \mathbb{Z}; s \le -1\}$ as t takes any odd integral value ≥ 3 .

For an odd positive integer m we have

$$\Phi_{2m}(X) = \Phi_m(-X)$$
.

As $n=p_1p_2\cdots p_t$ is odd for $p_1\geq 3$, this remark yields for the above n with $p_1\geq 3$ $c_p^{(2n)}=t-1$, $c_{p-2}^{(2n)}=t-2$ which implies $C\supset \{s\in \mathbf{Z};\ s\geq 1\}$. Since $C\ni 0$, we have $C=\mathbf{Z}$.

Remark. The smallest value of n for which $|c_i^{(n)}| \ge 2$ takes place is $n=3\cdot 5\cdot 7=105$. We have $c_7^{(105)}=-2$.

References

- [1] M. Beiter: The midterm coefficient of the cyclotomic polynomial $F_{pq}(x)$. Amer. Math. Monthly, 71, 769-770 (1964).
- [2] E. Lehmer: On the magnitude of the coefficients of the cyclotomic polynomial. Bull. Amer. Math. Soc., 42, 389-392 (1936).