73. Euler Number of Moduli Spaces of Instantons

By Mikio FURUTA

Department of Mathematics, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 14, 1987)

1. Introduction. Let S^4 be the 4-dimensional sphere with the standard Riemannian metric, P_k a principal SU(2)-bundle over S^4 with $c_2(P_k) = k \ (k > 0)$, and $P'_k = P_k / \{\pm 1\}$ the principal $SO(3) \ (=SU(2)/\{\pm 1\})$ -bundle over S^4 with $p_1(P_k) = -4k$. We denote by M_k the moduli space of antiinstantons on P_k (or P'_k). It is known that M_k has a natural structure of 8k-3 dimensional smooth manifold [3]. There are explicit descriptions of M_k [1] [2] [6], but not so much is known about the topology of M_k . S. K. Donaldson [6] and C. H. Taubes proved that M_k is connected. J. Hurtubise [10] proved that $\pi_1(M_k) = 0$ if k is odd, and $\pi_1(M_k) = Z/2$ if k is even.

It seems that some aspects of the topology of M_k is related to some profound properties of 4-dimensional smooth manifolds. In a sense, Donaldson's works in [5] and [7] about intersection forms of 4-manifolds are based on the fact that M_1 is diffeomorphic to open 5-disk.

The purpose of the present note is to announce our results about the Euler number of M_k .

2. Statement of the main results. Our first result is :

Theorem 1. The Euler number $\chi(M_k)$ is equal to the number d(k) of divisors of k.

The orientation preserving isometry group SO(5) of S^* acts on M_k naturally [3]. Let $T = SO(2) \times SO(2)$ be the maximal torus of SO(4) ($\subset SO(5)$), and $M_k^T = \{[A] \in M_k; g[A] = [A] \text{ for any } g \in T\}$ the fixed point set. We reduce Theorem 1 to the following Theorem 2.

Theorem 2. The number of the connected component of $M_k^{\mathbb{T}}$ is equal to d(k), and each component is diffeomorphic to \mathbf{R} . Precisely, the number of lifts of T-action on P'_k is equal to d(k), and our result is that for each lifted action, the moduli space of T-invariant anti-instanton on P'_k is diffeomorphic to \mathbf{R} .

We can apply Theorem 2 to get some topological results [8].

3. Outline of the proof. Donaldson [6] showed that the moduli space of (framed) anti-instantons is identified with the moduli space of (framed) holomorphic vector bundle over $CP^2 = C^2 \cup \ell^{\infty}$ with rank=2 and trivial on the line ℓ^{∞} . To prove Theorem 2, we investigate *T*-equivariant holomorphic bundles over CP^2 . Here we regard *T* as the maximal torus of SL(2, C). It could be possible to use the explicit description of M_k . To derive Theorem 1 from Theorem 2, we first show the following.

Lemma 3. Let S^1 be a generic 1-dimensional connected subgroup of

Instantons

T. Then we have $M_k^{S^1} = M_k^T$. For example, it suffices to take $S^1 = \{(t, t^p) \in T = SO(2) \times SO(2); t \in SO(2)\}$

for any fixed prime number p larger than k.

We give an outline of the proof of Lemma 3. If the class of an antiinstanton A in M_k is invariant under S^1 -action, then it is shown that we can lift S^1 -action on P'_k uniquely so that A is S^1 -invariant. Although the lift depends on A, we can show that the dimension of the component of $M_k^{S^1}$ which contains the class of A is always equal to 1, using Lefschetz formula for equivariant Atiyah-Singer index theorem [4]. On the other hand, $CO(4) = \mathbf{R}_+ SO(4)$ acts on M_k so that the \mathbf{R}_+ -action is free, which is corresponding to the radial extention of $\mathbf{R}^4 \cup \infty = S^4$. Therefore any component of $M_k^{S^1}$ is diffeomorphic to \mathbf{R} . Since any action of compact connected Lie group on \mathbf{R} is trivial, any element of $M_k^{S^1}$ is invariant under T-action.

To get Theorem 1, we use the following lemma.

Lemma 4. Let X be a (possibly open) manifold with S¹-action. Suppose that the rational cohomologies of X and X^{s_1} are finite dimensional. Then we have $\chi(X) = \chi(X^{s_1})$.

Since M_k has a homotopy type of quasi-projective variety [5, 11], its rational cohomology is finite dimensional [9]. Thus we can apply Lemma 2 for $X=M_k$ to get Theorem 1.

The details of the proof will appear elsewhere.

References

- M. F. Atiyah: The geometry of Yang-Mills fields. Accademia Nazionale dei Lincei, Scuola Normale Supereore, Pisa (1979).
- [2] M. F. Atiyah, V. G. Drinfeld, N. J. Hitchin, and Yu. I. Manin: Construction of instantons. Phys. Lett., 65A, 185-187 (1978).
- [3] M. F. Atiyah, N. J. Hitchin, and I. M. Singer: Self duality in four dimensional Riemannian geometry. Proc. Roy. Soc. London, Ser. A, 362, 425-461 (1978).
- [4] M. F. Atiyah and I. M. Singer: The index of elliptic operators III. Ann. of Math., 87, 546-604 (1968).
- [5] S. K. Donaldson: An application of gauge theory to four dimensional topology. J. Diff. Geom., 18, 279-315 (1983).
- [6] ——: Instantons and geometric invariant theory. Commun. Math. Phys., 93, 453-460 (1984).
- [7] —: Connections, cohomology and the intersection form of 4-manifolds. J. Diff. Geom., 24, 275-341 (1986).
- [8] M. Furuta: Oriented Z/2-homology cobordism classes represented by lens spaces (in preparation).
- [9] A. Grothendieck: IHES, Paris, Pub. Math., 29, 95-103 (1966).
- [10] J. Hurtubise: Instantons and jumping lines. Commun. Math. Phys., 105, 107-122 (1986).
- [11] C. Okonek, M. Schneider, and H. Spindler: Vector Bundles on Complex Projective Spaces. Boston, Birkhäuser (1980).
- [12] C. H. Taubes: Path connected Yang-Mills moduli spaces. J. Diff. Geom., 19, 337– 392 (1984).

No. 7]