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1. Introduction. In this note, we study a class o microdifferentiaI
equations with involutory double characteristics. Explicitly, let M be
real analytic manifold o dimension n (4) with a complexification X. We
consider a microdifferential equation defined in a neighborhood of poe TX\M
( 1 ) Pu--{(PI+/-1P2)P3q-Q}u=O.
Here we set p=a(P)(I_]_3) and assume the ollowing conditions.
(2) ord (P1)=ord (P)=m, ord (P)=m and ord (Q)=m+m.-1.
( 3 ) p,, p and p are real valued on T*X.
( 4 ) p(p0) 0 (1

_
]_3).

(5) dpl, dp2, dp3 and the canonical 1-orm w of T*X are linearly inde-
pendent at

( 6 ) {Io,, p} 0 if p, p 0 (1 _-/_. i, ] 3) where {., } denotes Poisson
bracket on TX.

By Sato et al. [4], the structure of microdifferential equation (1) is com-
pletely studied outside the regular involutory submanifold

Thus, we interest ourselves in studying the structure of solutions on 27. By
employing the theory of 2-microlocalization due to M. Kashiwara and
Y. Laurent (see [1], [3]), we show a result about the propagation of 2-
microlocal singularities as a byproduct of N. Tose [6]. More precisely, we
see the equation (1) is 2-microlocally equivalent to (Dx + ,/-1D.)u-0 or

Du--O or u--0.
2. Preliminary. 2.1. 2-microdifferential operators. Let X be an

open subset in C + and let T*X be its cotangent bundle. We take a coordi-
nate o X as (w,z) with weC and zeC. Then p=(w,z;Odw+dz)
denotes a point o T*X with e C and e C For microdifferential
operators, see M. Sato et al. [4] and P. Schapira [5].

Hereafter in 2.1, A is the regular involutory submanifold in T*X\X:
A--{(w, z;0, ) -0}. We identify A with a submanifold of A A through
the embedding T*X T*x(X X)T*(X X). By definition, is the union
of bicharacteristic leaves o A A issued from .4. We take a coordinate of
T* as (w, z z*) with (w, z ;0) e A and z* e C.

T*] is endowed with the sheaf ], of 2-micrcdifferential operators of
infinite order constructed in Y. Laurent [3].

Definition 1. :For an open subset U of T*3, a formal sum
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,(,,ezP,(w, z, O, z*) belongs to ’(U) if and only if the following condi-
tions (8) and (9) are satisfied.
(8) P, is holomorphic on U and homogeneous of order ] with respect to

(0, z*) and of order i with respect to z*.
( 9 ) For any compact subset K of U, there exists a positive number C

and for any positive, and a compact subset K, we can take a positive
C,, such that

sup IP,+l<C:(-)!/i!
[C’-( k) (- i)

(4 k 0)
(>_o, k<o)
(<o, k>_0)
(4 k <0).

Y. Laurent [3] constructed the sheaf of 2-microdifferential operators
of finite order, which is a subsheaf o ,. For a section P o , a(P)
denotes the principal symbol o P along A. Y. Laurent [3] also. defined the
sheaf o 2-microdifferential operators or general involutory submaniolds.
See [3] 2or more details about 2-microdifferential operators.

2.2. 2-microfunctions. Let M be a real analytic manifold with a
complexification X. Let X be a regular involutory submanifold in TXM
with a complexification A in T*X. Then, 2 denotes the union o all bi-
characteristic leaves o A issued rom X. On 2, there exists the sheaf
o micro2unctions along 2. is oliated by the canonical oliation o A
and or any section u of , u has the unique continuation property along
the leaves.

T2 is endowed with the shea o 2-microunctions along X, which
is constructed by M. Kashiwara about in 1973 in Nice. The shea2 plays
a powerful role to study properties of microfunctio.ns defined on . Pre-
cisely, we have exact sequences
(10) 0 >C]z > )z.(C ]rx=) >0
and
(11) 0 >Cl .
Here we set =Cz Iz and " T2X X.

Moreover, there exists the canonical spectral map
(12) Sp z- z >z.

For u e .]z, we set SS(u)=supp (Sp(u)), which is called the 2-singular
spectrum o2 u along X. For details about 2-microunctions, see
M. Kashiwara and Y. Laurent [1].. Statement of the main result. We ollow the notation prepared
in 1 and give

Theorem 1. Let u be a microfunction solution to (1) defined in a
neighborhood of po and let F be the bicharacteristic leaf of X passing through
po. Then there exist a neighborhood 9 of po in TX and a family of integral
manifolds {)} for the involutive system of vector fields (H, H) on F 9
and a family of integral curves {y)} of H on [’ 9 such that
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supp (u) r F 9= Ut ’J) U Ut r2) U (some of connected components of

4. Proof of Theorem 1. By finding a suitable real quantized con-
tact transformation, we can reduce the problem to studying the equation
(13) {(D+/- 1DDP+ (lower order)}u= 0
defined in a neighborhood of po--(O, /- ldx) e /- 1T*Rn, which satisfies
the conditions analogous to those for (1). Moreover, we may assume
(14) X={(x, v- 1. dx) ,===0}.
Here we take a coordinate o /-1 T*R as (x, /-l.dx) with x, e Rn.
We set x’= (x, x, xD, ’ (, , ) e R and x"= (x, ., Xn), " (, )
e Rn- and take a coordinate of T’z2 as (x; j-C-l,,; /-lx’*) with
x’*=(Xl*, x*, x*). We put as a complexification o X
(15) A={(z, .dz) e T*C" ,=5=5=0}
where we take a coordinate of T*C as (z, 5.dz) with z, 5 e C. We study
the equation (13) 2-microlocally along X and then see easily that
(16) a(PD(r) =/= 0
for reC={(x; /-1"; /-lx’*)e T*2\X; x*=x* =O}. Thus 2-micro-
locally in a neighborhood of r e C, it suffices to study the 2-microdifferential
equation {(D+/-1DD+p7IQ)u=O. Here Q satisfies the condition
(17) {(], i)e Z; (P[Q)O}{]gO, ]-1i}.
Then, by Theorem 3.1 of N. Tose [6] (see also [8], [9] and [11]), we can find
an invertible section R of &’, defined in a neighborhood of r e C, and satis-
fying
(18) R{(D+/- 1DD+ Q}= {(D+f- 1DD}R.
By (18) and the unique continuation properties of 2-microfunctions with
holomorphic parameters (see N. Tose [7]), we see that for any 2-micro-
function solution u to (16),
(19) supp (u)r C is a union of integral manifolds for (/x, /Sx).

On the other hand, we can find a real quantized cotact transformation
which transforms the equation (1) into
(20) {(P+/- 1P2)D+ (lower order)}u= 0
defined in a neighborhood of p0--(0, /-ldx,,). Here the equation (20)satis-
fies the conditions analogous to those for (1). Moreover, we may assume
the condition (14). Then, in the same way as in studying (13) 2-micro-
locally, we have
(21) a,(P zr- /- 1PD(r) =/= 0
for r e C={(x /- 1" f- lx’*) x*=O}. Further, for any 2-microfunc-
tion solution u to the equation (20), we can show
(22) supp (u) C is invariant under 3/x.

We get back to the original situation in 1 and set//to be a complexi-
ficatio of in T*X. Since 2-microdifferential operators of finite order
are invertible at 2-elliptic point, we have
(23) SS(u)\cC U C.
Here ,= {r e T*z2\2 a(P)=0} and = {r e T*2\2 a(P,+r-k-P)=O}.
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Moreover and . are disjoint to each other in Tz*2\2. By (19), (22) and
(23), we can show the assertion of Theorem I if we consult the fundamental
exact sequences (10) and (11) and the unique continuation properties of .
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