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60. On the Value of the Dedekind Sum

By Kiyoshi KATASE
Faculty of Sciences, Gakushuin University

(Communicated by Shokichi IYANAGA, M. J. A., June 9, 1987)

Let p and ¢ be relatively prime positive integers. The »n'* Dedekind
sum for p, q will be defined by

g-1 n
s o= [ @=12 -,
k=1 q
where [2] denoctes, as usual, the greatest integer not exceeding . It is easy

to see that S.(p, ¢)=S(q, p).—:—;-(p— 1)(¢q—1) and the following reciprocity

formulas are known :
(1) L8 0+ L8 m=—1 @—DEr—(g-1DEg—1),
D q 6pq

1 1 1
2) .t — Sfq,p)=——m@—D(q—1Cpe—p—q+1
(2) 20— 2a=D (g, ) 4pq(p Wg—D@2pqg—p—q+1)

(see, for example, Carlitz [3]).

Agsume now p>q throughout this paper. One of the methods to prove
these reciprocity formulas is to put [kq/p]l=¢—1(i=1, 2, - - -, q@) and change
S.(q, ») to the sum with respect to ¢ taking the multiplicities of 4’s into ac-
count. Here the multiplicity of ¢ means the number of % which yields the
same value of ¢ and is determined as follows: If & ranges from [(¢—1)p/q]
+1 to [ip/q] for i< q, then the value of [hq/p] is i—1; for i=q, however, h
ranges only from [(¢—1)p/ql+1to p—1. (See, for example, Rademacher
and Whiteman [6], (3.5).) Therefore, to obtain the reciprocity relation, we
have only to apply the equation
(3) [(h+1)q]_[_hg_]={1 if h=Ilip/q]l (i=1,---,q—1) or p—1,

P D 0 otherwise.

We have now the following lemma.

Lemma. Put r,=p—I[p/qlq, then we get the equation
(4) [(k+1)p]_[@]={[p/q]+1 if k=I[jq/r) (=1, - - -, m—1) orq—1,

q q [p/ql otherwise.

Proof. Substituting p=I[p/qlg+7,, we get

(21 )

Since q and », are relatively prime and r,<q, the equation (4) follows from
the equation (3). ]

The equation (4) can be used for reducing the Dedekind sum to a sum
of fewer terms and thus for giving an algorithm to evaluate the Dedekind
sum in some cases.

Sy(v, O+
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Put »_,=p, r,=¢q, and
P=T;_0— [h]ri_l fori=1, 2, -
i
Then r, and r,,, are relatively prime, »,>r,,, for all 4, and #,=1 for some
n(=1). Leta,(j=-—1,0, --.,n—1) be inductively defined by the equations
a,=1, a=I[p/ql, and p=ay,+a, 1,

(or equivalently, a,,,=a;_,+a,lr;/r;..]), and put g=a,_, (so that 1<g<p/2).

Theorem. Using the above sequence of remainders r,, i=1,2, ---, n,
the Dedekind sums for n=2, 3 are evaluated as polynomials on p, q, G, and
[r,_y/r] (G=0,1, ---, n) as follows:

(a) Sz(p,q)——(zo Dg—D—& - q)+1 A=8(=Dr ) 1

2 6
D St 1yi| Tion l____ ng
+2 35 1)[7”1 ]+6( 1",
(b)  Sy», )—%@ 1*(q— 1)——p(p Dp— q)+1 1—32(—1)10(10-1)

_p=1. 101 _11[_“-1] L —v@w-1a.
4 +4p(p )g}o( ) r +4( )" (p—1)q
Proof. (a) Apply the equation (4) to the sum

<, ([e+Dp]_[kp
S (| Exe] - [22]),
then we get
(5) Lo, 9+184g, =1 (0—1)Ep—D(g—D(2g—1)
P q 6pq

—%-(q—l)(zq—l)[—g].

(This equation coincides with the reciprocity formula (1) when p <q.)

Since the second term on the left hand side has »,—1 terms and », is
smaller than ¢, we may regard this as a recursive equation. It follows
from the recursive equations

;—Sz("'i, T+ 1 So(Pi415 T4
i

i1

=1 (1%—1)(27“1—1)(7'“1—1)(27”“1—1)——%—(?““1—1)(2?"“1—1)[ ’”i]

7741 141

(/L:’—ly 0’ v ,n—2)

that

%sz(p,q) ~—<p 1(q— 1)+z : D" 1, — 1)

7T 141

+ZJ( D(r D —1).

Since we get
n}—:l (—1)i+!

=1 T

=(—=1"a, .,
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the equation (a) follows.
Note that
(~1rqa,=1+pgy, "V modulo 2,

=0 T’l/rt+ 1

since ¢> 72 (=D /(rrs.) =(—1D"b,_, is an integer where b, (j=-1,0,
-+, m—1) is inductively defined by b_,=1, b,=I[q/7.], and the equation
q=br;+b,_r;.1.
Also note that the integer g=a,_, is uniquely determined by the equation
q7=(—1)" modulo p and the condition 1<g7<p/2.
(b) Applying the equation (4) to the sum

e 3( (k+Dp]_[kp
and using the reciprocity formula
LS i kp 1t i
S —(h—1) }[ '+ & ter— -0 2] =0 —1r(g-1y
h=1 q
(see Carlitz [3], § 3 and Katase [4], (16)), we obtain the equation
i@, »)—Syg, )= [ﬁ] ¢(g—1)"
41lq

Substituting p—h for & in Sy(q, p)=>2-1[hq/p]* and r,—7 for j in S,(q, 7,)
= >3 7q /7] and using the recursive equation (5), we obtain the recursive
relation

1
———S(p, ————8y(q,
2 (=1 (», O+ (_1) «(q, 1)

1 o Do e _1o.—ple
= s @~ D@=DEPa—p—a+D=Za(q 1)[q].

(This equation coincides with the reciprocity formula (2) when p<q.)
Following entirely similar method to (a), we get (b). O

Remark 1. The equation (a) plays an important role in classifying
3-dimensional lens spaces by p-invariants (see Katase [5]). On the other
hand, it follows from the equation (b) that 4S,(p, ¢) is divisible by p—1.
Moreover, analyzing reciprocity formulas, we have the following

Proposition. p—1 divides S,(p, @) if p=3 modulo 4 and never divides
S:(», @) if p=3 modulo 4; however, 2S,(p, q) is divisible by p—1 in this
case.

The equations (a) and (b) are interesting not only with these applications
but also as the algorithm for computing these Dedekind sums.

Remark 2. As another application of the eguations (3) and (4), we
obtain the reciprocity formula

(0 sl ElT R

and the value of the half sum

@ E[TEv s e Eev B
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In fact, since
[i‘m([(h+1)q]_ [@—])——:[<[£]+1)g—] ={[q/2]+1 if p is even and p<2q,

s} P P 2 P [g/2] otherwise,
we get
L it helip/al £ {[q/2]+1 when p is even
if h=[ip/q] for i=1, - .., and p<2q
[(h+ l)q] _ [ hq ] _ { [q/2] otherwise
p p 0 if h[ip/ql.

Hence we get
[%]h <[(h+1)q] _ [h_q])z {Zgiﬁ““ [ip/q] if p is even and p<2q,
w= D 7] > k21 ip/q] otherwise.

On the other hand, the left hand side is equal to

(a-a[ ] ][50

-2 )7

Hence the extra terms arise on both sides when p is even and p<2q but
they cancel each other and we get the formula (c).

Also applying the equation (4) to the sum > W1 k([(k+1p/ql—[kp/qD),
we obtain the recursive equation

b b S b R |6 R (B RO

and hence the equation (d) follows.
Remark 3. As for the Dedekind sums such as S,(», Q) (n=4),
Szl (—1rretrarl gnd other five sums of Berndt [2], and 37221 [hq/p]"é"¢ and
a-Ekp/ql* et/ (& ig a p*™ root of unity) of Katase [4], we have not yet
obtained even reciprocity formulas. The foregoing method does not seem
to work in these cases.
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