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Introduction. In the n-dimensional complex vector space C* with
standard norm | z|*=|% [+ - - - +|2,[ for 2=(z,, - - -,2,) € C*, let D be a rela-
tively compact domain of C” with smooth boundary. Given e D, D carries
the Green’s function G(z) with pole at  for the Laplace equation 4G=
(0*/02,0%,+ - - - +0°/92,02,)G=0. The function G(2) is expressed in the form

G(z)z{—logIZ—CHHH(z) (n=1)
z—Cll"***+24+H(2) (n=2)
where 2 is a constant, H(z) is harmonic in D and H({)=0. The constant
term 2 is called the Robin constant for (D, {¢}). When D varies in C" with
parameter t, so does 4 with ¢. This is realized as follows: Let B be a
domain of the f-complex plane containing the origin 0. We let correspond
to each t € B a relatively compact domain D(t) of C* with smooth boundary
such that D(t) s ¢ for all te B and D(O)=D, and dencte by i(t) the Robin
constant for (D(f),{¢}). Consequently, i(t) defines a real-valued function
on B. In [6] we showed

Theorem 1. If the set D={(t,2) e BXC"|z e D(®)} is a pseudoconver
domain in BXC", then A(t) is @ superharmonic function on B.

In this note we extend Theorem 1 to the case when D(f) are domains
in a complex manifold M.

1. Let M be a (compact or non-compact) connected complex manifold
of dimension #. In this note we always assume that =2, for we studied
in [5] the case of n=1. Letds*=>",_,9.:,d2,8d%, be a Hermitian metric
on M. For notations we follow [3]. We put

0=i 3 gudeNdz, o=@ n! g@DdaAdEA - Adz,Ndz,,

a,f=1
o (aAeA P — o) S a0 ”}_a(gg“ﬂ)i}

A== (349 +9x3) z{a;ﬂ Y oz02, tRe Y oz,
where = —1, g(z)=det(9,,(2)) and (9*%(2)) =(g.;(2))"'. If a function u
defined in a domain of M is of class C* and satisfies 4u=0, then u is said
to be harmonic. For £e M and a neighborhood U of ¢, we denote by
E(, U, ds® the set of all elementary solutions E(g, 2) for 4E(¢,2)=00n U XU
except for the diagonal set (see K. Kodaira [2], p. 612).

In what follows, if M is compact, then we assume D=xM. Moreover,
we suppose £ e D and E(,2) e E¢, U, ds?.
First, consider the case where D is a relatively compact domain of M
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with smooth boundary 6D. Then D carries the Green’s function G(z) of D
with pole at { which is uniquely determined by three conditions: G is
harmonic in D except at {, G(z)=0 continuously on oD and lim,_, G(?)
xX1(z,0)*2=1, where r(z,{) denotes the geodesic distance from z to { with
respect to ds®. Then G is expressed in a neighborhood of ¢ in the form
G()=E{,2)+2+H(2),

where 2 is a constant, H(z) is harmonic and H()=0. The constant term
4 is called the Robin constant for (D, {¢}) which corresponds to E(Z, 2).

Next, consider the case where D is a domain of M. Choose a sequence
of relatively compact subdomains D, (p=1,2,-..) of D with smooth
boundary such that ¢ e D,, D,UdD,cD,,, and | J;., D,=D. Each D, carries
the Green’s function G, with pole at ¢ and the Robin constant 2, for (D,, {{})
which corresponds to E({,2). Since G,(2) and 2, increase with p, the limits
G(2)=lim,_., G,(2) and A=lim,._., 2, exist, where it may happen that G(z)=
4+ oo on D, or equivalently 2=+ oco. We call G the Green’s function of D
with pole at ¢, and 2 the Robin constant for (D, {¢}) which corresponds to
E(,2). Asin the theory of Riemann surfaces ([1], Chap. IV), D with 1=
+ oo (resp. <+ oo) is said to be parabolic (resp. hyperbolic) for ds*.

Finally, consider the case where D is an open set of M. When we
denote by D, the connected component of D which contains ¢, we have the
Green’s function G, of D, with pole at {, and the Robin constant 4, for
(D, {¢}) which corresponds to E({, 2). By the Green’s function G of D with
pole at { we mean G=G, on D, and =0 on D—D,. By the Robin constant
A for (D, {¢}) which corresponds to E({, 2) we mean 1=21,.

Remark 1. In the special case where M=C" and ds*=|dz [+ - -+
|dz,’, we have always 2<0. In [6], a domain D of C" with 2=0 (resp. <0)
was said to be parabolic (resp. hyperbolic).

2. Let M be a complex manifold with Hermitian metric ds?, and let
B be a domain of C. Consider a domain D of the product space B x M and
put D(t)=D N ({t} x M) for ¢t e B, which is called a fiber of D att. As usual
we can regard D as variation of open set D(t) of M with complex parameter
te B. We write thus

D:t—>D(t) (teB).

Throughout this section we impose on D the following conditions : (a) There
exists a point ¢ ¢ M such that DDBx{¢}; (b) The boundary of D in BxM
is smooth ; (¢) Each D(?) is a relatively compact domain of M with smooth
boundary aD(f). Now, take E((,2) e E(,U,ds?). For any fixed te B we
have the Green’s function G(¢,2) of D(t) with pole at { and the Robin
constant A(¢) for (D(t),{¢})) which corresponds to E({,z2), so that G is ex-
pressed in a neighborhood of { in the form

(1) G(t,2)=E(, 2)+2t)+H(, 2)

where H(t, 2) is harmonic with respect to z and H(t,2)=0. Consequently,
A(t) becomes a function on B such that — co <A(f)<+ . Since the varia-
tion DUaD: t—D(t) UaD(t) (t e B) is diffeomorphically trivial, G(t,2) and
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A(t) are of class C* on (DUaD)—Bx{¢} and on B, respectively. It follows
from (1) that 3G /at is of class C* on DU3D. In these circumstances we
obtain the following fundamental inequality :

Theorem 2. Suppose that D is a pseudoconvex domain in BXM.

Then
o 2 (506 (26526 L s
otot — (n-—l)cuzn{ D(t) JID@) ot ot ¢ Nty 00xe

for te B, where w,, 18 the surface area of the unit sphere in C*,

3. Let us give some applications of Theorem 2. In this section except
for 3°, we restrict ourselves to the same situation as in Theorem 2.

1° (Superharmonicity). Suppose that ds* satisfies the following con-
dition : ||0xw | (2) 0*/n!<Imddxw on M, or equivalently
(2) D mp= 1gpapT <0 on M,
where T,=7_, T%, and T¢,=1",—1I, (complex torsion). Then we obtain
from Theorem 2

*A(t) -1 = 0G [[*
(3) 389t = (=D, | 3t

Corollary 1. If ds® satisfies (2), then A(t) is a superharmonic function
on B.

It is clear that any Koehler metric ds® on M satisfies (2). A simple
example of non-Koehler metric satisfying (2) is ds*=|dz|*/(1—|2|f)* on
M={zeC"||z|<1}.

2° (Rigidity). By the inequality (3) we have

Lemma 1. Suppose that ds® satisfies (2). Then, (i) if (6?2/0tat)(t,) =0
at some t,e B, then (0G/at)(ty, 2)=0 on D(t,); (i) if A(t) is harmonic on B,
then D is identical with the product B x D(t,).

3° (Homogeneous spaces). Let M be a complex homogeneous (compact
or non-compact) manifold with respect to a complex -Lie transformation
group G. Suppose that G admits a Koehler metric ds*. Let D be a rela-
tively compact pseudoconvex domain of M with non-empty smooth bound-
ary. Construct the following subset of GXD:

D={(g9,2) € GxD|g(2) € D}.
Consequently, D becomes a pseudoconvex open set of G XD and D>{e}x D,
where e is the unit element of G. We set D(2)=DN(GX{z}) for ze D. We
regard D as variation of open set D(z) of G with parameter z of D, namely,
D:2—D() (ze D). Choose E(h, g) € E(e,U,ds?). For each ze D, we con-
sider the Robin constant i(z) for (D(z), {€}) which corresponds to E(e, g).
By Lemma 1
(i) —(2) is a plurisubharmonic function on D such that
lim, ;p (—2(2) =+ 0;

(ii) if —a(2) is not strictly plurisubharmonic at some z,€ D, then
there exists a left invariant holomorphic vector field X on G such that
{(Exp tX)(g)(2z)|te C} is relatively compact in D (resp. oD, M —(D UaD))
for every ge G with g(z)eD (resp. 0D, M—(DUdD)). Hence D never

(£0).

D(t)
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occurs to be a Stein manifold.

Remark 2. The assertion (ii) may be compared with the following
theorem due to D. Michel [4]: In a compact homogeneous manifold with
a complex Lie transformation group, any pseudoconvex domain which has
at least one strictly pseudoconvex boundary point is a Stein manifold.

4. Let M,ds* and B be the same as in Section 2. Consider a domain
D of BxM. Throughout this section, we suppose that (a) there exists a
point £ € M such that Bx{(;}cﬁ; (b) ds® is a Koehler metric on M; (¢c) D
admits a real analytic plurisubharmonic function ¢ on D such that D,=
{p<r} is relatively compact in D for any real r. Fix once and for all E(, 2)
e E, U, ds”) with ¢ being the point mentioned in (a). For fe B we have
the Robin constant A(¢) for (D(?),{¢}) which corresponds to E({,z). Thus
A(t) is a function on B such that — oo <<A(t)< + . Let B, be a relatively
compact subdomain of B. Then there exists a real 7, such that D,oB,x
{¢} for all r>r,. For each te B,, we denote by D,(t) the fiber of D, at ¢,
and have the Robin constant 2,(t) for (D.(),{¢}) which corresponds to
E,2). In general, D,:t—D,%) (teB,) is no longer diffeomorphically
trivial, and hence 1,(¢) is not always of class C* on B,. However we shall
find the following differentiability which is all we need :

Lemma 2. For almost all r (>1y), 2,.(t) is of class C' on B,.

This and Corollary 1 imply that for any such r, 2,(f) becomes super-
harmonic on B,. Since 2,(£)—A(t) (r—- o) increasingly at ¢t € B, we have
proved

Theorem 3. The function A(t) is superharmonic on B.

This yields the following fiber’s uniformity :

Corollary 2. Consider the subset K={te B|D(t) has at least one
parabolic connected component for ds’}. If K is of positive logarithmic
capacity in C, then K=B and each connected component of D(t) for every
t € B is parabolic for ds*.
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