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Introduction. In the n-dimensional complex vector space C with
standard norm [Iz]--Izl+ /lz for z=(z, ...,z) C, let D be a rela-
tively compact domain of C with smooth boundary. Given e D, D carries
the Green’s function G(z) with pole at for the Laplace equation G--
(3/3zx/... +/3z)G=O. The function G(z) is expressed in the form

(--log[z--+2+H(z) (n=l)
G(z)=z---+++H(z) (n2)

where 2 is a cnstant, H(z) is harmonic in D and H()=0. The cnstant
term 2 is called the Robin constant or (D, (}). When D varies in C with
parameter t, so does 2 with t. This is realized as follows" Let B be a
domain of the t-cmplex plane containing the origin O. We let correspond
to each t e B a relatively compact domain D(t) C with smooth bundary
such that D(t) or all t e B and D(O)=D, and denote by 2(t) the Robin
constant or (D(t), {}). Consequently, (t) defines a real-valued unction
on B. In [6] we showed

Theorem 1. If the set D={(t, z) e B C z e D(t)} is a pseudoconvex
domain in B C, then 2(t) is a superharmonic function on B.

In this note we extend Theorem i to the case when D(t) are domains
in a complex manifold M.

1. Let M be a (compact or non-compact) connected cmplex manifold
of dimension n. In this note we always assume that n2, or we studied
in [5] the case of n=l. Let d=,=gdz be Hermitian metric
n M. For ntations we fllow [3]. We put

=i g.dz.Ad, =(i)n g(z)dzAdA...AdzAd,
a, =1

where i=--l, g(z)=det(g(z))and (g(z))=(g(z))-. I a unction u
defined in a domain o M is of class C and satisfies u=0, then u is said
to be harmonic. For eM and a neighborhood U o , we denote by
E(, U, d) the set of all elementary solutions E(, z) for E(, z)=0 on U U
except for the diagonal set (see K. Kodaira [2], p. 612).

In what ollows, i M is compact, then we assume D#M. Moreover,
we suppose e D nd E(, z) e E(, U, d).

First, consider the case where D is a relatively compact domain o M
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with smooth boundary 3D. Then D carries the Green’s function G(z) of D
with pole at 5 which is uniquely determined by three conditions" G is
harmonic in D except at , G(z)--0 continuously on 3D and lim:G(z)

r(z, )--1, where r(z, ) denotes the geodesic distance from z to with
respect to ds. Then G is expressed in a neighborhood of 5 in the form

G(z) E(, z) + +H(z),
where is a constant, H(z) is harmonic and H()=0. The constant term

is called the Robin constant for (D, (5}) which corresponds to E(5, z).
Next, consider the case where D is a domain of M. Choose a sequence

of relatively compact subdomains D (p=l, 2,...) of D with smooth
boundary such that e D, DUD_D/ and (._J= D=D. Each D carries
the Green’s function G with pole at and the Robin constant for (D, {})
which corresponds to E(5, z). Since G(z) and , increase with p, the limits

G(z)=lim G,(z) and =lim, exist, where it may happen that G(z)--
+ c on D, or equivalently = + c. We call G the Green’s function of D
with pole at 5, and the Robin constant for (D, {5}) which corresponds to
E(, z). As in the theory of Riemann surfaces ([1], Chap. IV), D with

+ c (resp. / c) is said to be parabolic (resp. hyperbolic) for ds.
Finally, consider the case where D is an open set of M. When we

denote by D the connected component of D which contains , we have the
Green’s function G of D with pole at 5, and the Robin constant for
(D, {}) which corresponds to E(, z). By the Green’s function G of D with
pole at we mean G=G on D and --0 on D-D. By the Robin constant
for (D, {5}) which corresponds to E(5, z) we mean .

Remark 1. In the special case where M=C and ds-]dzl/...
ldzl, we have always g0. In [6], a domain D of C with =0 (resp. 0)
was said to be parabolic (resp. hyperbolic).

2; Let M be a complex manifold with Hermitian metric ds, and let
B be a domain of C. Consider a domain D of the product space BMand
put D(t)= ({t} M) for t e B, which is called a fiber of/ at t. As usual
we can regard/ as variation of pen set D(t) of M with complex parameter
t e B. We write thus

D’t >D(t) (teB).
Throughout this section we impose on D the ]ollowing conditions (a) Ther
exists a point M such that DB {}; (b) The boundary of D in B M
is smooth; (e) Each D(t) is a relatively compact domain of M with smooth
boundary 3D(t). Now, take E(, z) e E(, U, ds). For any fixed t e B we
have the Green’s funetion G(t, z) of D(t) with pole at and the Robin
eonstant 2(t) or (D(t), (}) which corresponds to E(, z), so that G is ex-
pressed in a neighborhood of in the form
( 1 ) G(t, z) E(, z) + 2(t) +H(t, z)
where H(t, z) is harmonic with respect to z and H(t, )=0. Consequently,
2(t) becomes a function on B such that --co2(t) +co. Since the varia-
tion D U 3D" t--D(t) U 3D(t) (t e B) is diffeomorphically trivial, G(t, z) and
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(t) are of class C on (D U3D)--B (5} and on B, respectively. It follows
from (1) that 3G/3t is of class C on DU3D. In these circumstances we
obtain the following fundamental inequality"

Theorem 2. Suppose that D is a pseudoconvex domain in BM.
Then

{i  Imll
for t e B, where is the surface area of the unit sphere in C.. Let us give some applications of Theorem 2. In this section except
for 3, we restrict ourselves to the same situation as in Theorem 2.

1 (Superharmonicity). Suppese that ds satisfies the following con-
dition" , (z) n/n gIm3, on M, or equivalently

"3 T <0 on M,(2) E,:g
where T. = T. and T F--F, (complex torsion). Then we obtain
from Theerem 2

(3) 22() < --1 ]]3G (<0).
OtO (n-1)

Corollary 1. If ds satisfies (2), then () is a superharmonic function
on B.

It is clear that any Koehler metric ds on M satisfies (2). A simple
example of non-Koehler metric satisfying (2) is ds=lldzl/(1-1izl[) on
M={zClllzll<l}.

2 (Rigidity). By the inequality (8) we have
Lemma 1. Suppose that ds satisfies (2). Then, (i) if (O2/Ot)(t0)=0

at some to e B, then (OG/3t)(to, z)=0 on D(t0) (ii) if () is harmonic on B,
then D is identical with the product B D(to).

8 (Homogeneous spaces). Let M be a complex homogeneous (compact
or non-compact) manifold with respect to a complex .Lie transformation
group G. Suppose that G admits a Koehler metric ds. Let D be a rela-
tively compact pseudoconvex domain of M with non-empty smooth bound-
ary. Construct the following subset of G X D"

D= {(g, z) e G Dig(z) e D}.
Consequently, D becomes a pseudoconvex open set of G D and D{e} D,
where e is the unit element of G. We set D(z) D (G {z}) for z e D. We
regard D as variation of open set D(z) of G with parameter z of D, namely,
D" zD(z) (Ze D). Choose E(h, g) e E(e, U, ds). For each z e D, we con-
sider the Robin constant (z) for (D(z), {e}) which corresponds to E(e, g).
By Lemma 1

( i ) --2(z) is a plurisubharmonic function on D such that
lim_ (-2(z))= +

(ii) if --(z) is not strictly plurisubharmonic at some zo e D, then
there exists a left invariant holomorphic vector field X on G such that
{(Exp tX)(g)(zo)]t e C} is relatively compact in D (resp. OD, M--(DUOD))
for every g e G with g(zo) e D (resp. OD, M-(D UOD)). Hence D never
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occurs to be a Stein manifold.
Remark 2. The assertion (ii) may be compared with the following

theorem due to D. Michel [4]" In a compact homogeneous manifold with
a complex Lie transformation group, any pseudoconvex domain which has
at least one strictly pseudoconvex boundary point is a Stein manifold.

4. Let M, ds and B be the same as in Section 2. Consider a domain
D of BM. Throughout this section, we suppose that (a) there exists
point e M such that B{}D; (b) ds is a Koehler metric on M; (c)D
admits a real analytic plurisubharmonic function on D such that D--
{r} is relatively cmpact in D for any real r. Fix once and for all E(, z)
e E(, U, dsO with being the point mentioned in (a). For e B we have
the Robin constant (t) for (D(0, {}) which corresponds to E(, z). Thus
() is a function on B such that oo ](t)=< / o. Let B0 be a relatively
compact subdomain of B. Then there exists a real r0 such that DBoX
{} for all rro. Fc,r each t e B0, we denote by Dr(t) the fiber of Dr at t,
nd hve the Robin constant L($) fr (D(), {}) which corresponds to
E(, z). In general, /r" t--*D(t) ( e B) is no longer diffeomorphically
trivial, and hence L(t) is not always of class C on B0. Hwever we shall
find the following differentiability which is all we need"

Lemma 2. For almost all r (ro), r(t) is Of class C on Bo.
This and Crollary 1 imply that fr any such r, L(t) becomes super-

harmonic n B0. Since r(t)--*() (r--.+ oo) increasingly at e B, we have
proved

Theorem 3. The function (t) is superharmonic on B.
This yields the following fiber’s uniformity
Corollary 2. Consider the subset K= {t e BID(t) has at least one

parabolic connected component for ds}. If K is of positive logarithmic
capacity in C, then K--B and each connected component of D(t) for every
t B is parabolic for ds.
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