
No. 2] Proc. Japan Acad., 62, Ser. A (1986) 65

On Automorphism Groups of Compact Riemann

Surfaces of Genus 4

By Izumi KURIBAYASHI*) and Akikazu KURIBAYASHI**)

(Communicated by Shokiehi IYANAG., M. J.A., Feb. 12, 1986)

Let X be a compact Riemann surface o genus g2. A group AG o.
automorphisms o X (i.e., a subgroup o the group Aut(X) o all auto-
morphisms o X) can be. represented as a subgroup R(X, AG) o GL(g, C)
as elements o AG operate in the g-dimensional module o abelian differ-
entials on X. The purpose o this paper is to determine in case g=4 all
subgroups o GL(g, C) which are conjugate to some R(X, AG) (for some X
and some AG). (For the case g 2, 3 the same problem was already solved
[2] or the case g--2; the result or g=3 is not yet published.)

A more detailed account will be published elsewhere.
1. Preliminaries. Let G be a finite subgroup o GL(g, C), and H a

non-trivial cyclic subgroup of G. Define two sets CY(G) and CY(G; H) by

CY(G) "={K; K is a non-trivial cyclic subgroup of G},
CY(G; H)’= {K e CY(G); K contains strictly a subgroup H of G}.

We say that G satisfies the condition (F) i or every element A of G, r(A)"
=2--(Tr(A)/Tr(A-)) is a non-negative integer. Further we define as
ollows
1 ) r(H) "--2--(Tr (A)/ Tr (A-l)), where H--(A}.

(2) r.(H) "=r(H)-- r.(K) (defined by descending condition)
K

where K ranges over the set CY(G; H).
(3) l(H) "--r.(H)/[No(H)" H], l(I)"--0, where I is the trivial group.

4 go(G) "=(1/#G) Tr (A).
AG

Then we have the ollowing relation [2]"

(RH) 2g-2=#G(2go-2)/ #G l(H)(1--(1/n)).

Here {H} is a complete set o representatives of G-conjugacy classes of
CY(G) and n "=H. We put urther G=n.

We say that a finite subgroup G o GL(g, C) satisfies (RH/) i G saris-
ties (F)and i l(H)is a non-negative integer or any H o CY(G). Then
put RH (G) "-[go, n; n, ..., n, ..., n, ..., n], where n appears/(H)-times
(<=i<=s).

We say that a finite subgroup G o GL(g, C) satisfies the condition (E)
if the 2ollowing conditions are satisfied"
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(i) For each element M(#M=nI) of G there exist integers ,, .,, such that

Tr (M)=I/ ,/(1-- ,), =exp(2zri/n),

where lg,=n--1, (, n)=l and r=2--(Tr(M)+Tr(M-))O.
(ii) For any A, B of G such that B=A, klm (km), m=#A, the

trace ormula for B does not conflict with the one for A.
We say that G satisfies the condition (K) i it satisfies (RH/) and (E).

We know that R(X, AG) satisfies the condition (K) [2, 3].
Notations. For the sake o simplicity we put as follows"

_= 0 0 B= O0 C= O0 D= 01
0--1 01 00 00
0 0-- 00-- 10 00

E= 0 1 U= d a b+c=-i b 0
1 0 a d bc=1/5 D(a,b,c,d)= 0 c
O0 cb d----a O0

[o o 0 0-]

0

2. Maximal subgroups. First, we consider all possible n which
satisy RH(G) in 1. Next, or eaeh possible n considered above we con-
struct all possible, groups o order n which satisfy the eondition (E). Thus
we have maximal subgroups o GL(4, C) among them which satisfy the
condition (K).
(A-l) (1) G(120)- (D(, 2,

(2) G(89)--(D(o, o, o, o), B, D}, --.
(3) G(9 8)--(D(1, 1, o, o), E, A}.
(4) G(4 9)-= (D(, 5, 5, ), D(o, o, o, o), A}, 5--5.
(5) G(18)= (D(o, J, 1, 1), D(o, o, o, o), A}.
(6) G(2 6)- (D(, , 1, 1), A}, 5-.
(7) G(62)=(D(, , , ), E}, =.
(8) G(223)=(D(--1, --1, 1, --1), D(1, -1, --1, 1), D(o, o, o, o)}.
(9) G(8, 8) (D(i, i, 1, 1), }, i /- 1.

(A-2) (1) G(15)--(D(, , s, ’)}, --.
(2) G(12)- (D(5, , , )}, 5-- 5.
(3) G(10)- <D(, -, ,

(B) (1) H(40)= <D(, , , 4), E>,
(2) H(32)--(D(, , , ), E}, =.
(3) H(24) (D(i, --i, i, i), L}.
(4) H(18)=(D(, , , )}, =.

All other groups are contained up to GL(4, C)-conjugacy in the group
listed above and there are 74 groups in all (including the trivial one).

It remains to show that these groups are conjugate to some R(X, AG)
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for some X of genus 4 and some AG.
3. The expressions of curves. Let X be a non-hyperelliptic curve

of genus 4. X is contained in a unique irreducible quadric surface defined
by Q-0 and X is the complete intersection of Q-0 with an irreducible
cubic surface defined by F---0 [1]. If Q-0 and F-0 are A-invariant, then
A comes from an automorphism of the curve X--={(Q-0)f3(F-0)}. The
converse of this statement is true as was shown by F. Momose. Hence we
can give curves for the groups in (A-l) and (A-2) by this method. How-
ever for (A-2) we can also. obtain by an elementary method.
(A-I) Non-cyclic case:

(1) Q. XX,+XX=O, F" XX-XX--XX+XX=O.
(2) Q x+X+x] o, F X-XX.X--=- O.
(3) Q" xx+xx=o, F" X-X+X-X-O.
(4) Q" X+X,X- O, F" X-X+X=O.
(5) Q" X+X,X O, F" X+X+X,X.Xa- O.
(6) Q" X]+X+XX=O, F" X--X+X+XX+cXXX-O.
(7) Q" XX.+XX=O, F" X+X+XX+X]X=O.
(8) Q" X+X]+X-- O, F" X+X]+XX,+X]X O.
(9) Q X+X-t-X3X O, F X-+-XX+XX+XX3+ cX,X2X3-- O.

Here c in. (6) and (9) are arbitrary constants which make the equations
irreducible.
(A-2) Cyclic case: We can easily obtain the equations [4].

(1) y’= x(x-- 1).
(2) y,2= x(x-- 1).
(3) y,O_ x(x-- 1).

(B) The curves in this block are hyperelliptic [4].
(1) y= x--l.
(2) y-- x(x-1).
(3) y= x(x-1)(x+2/-- 3 x+ 1).
(4) y= x(x " 1).

4. Main Theorem. From 2 and 3 we are able to get the fol-
lowing

Theorem. Let G be a finite subgroup of GL(4, C). Then the follow-
ing two conditions are equivalent.

(1) There is a compact Riemann surface X of genus 4 and an auto-
morphism group of X such that R(X, AG) is GL(4, C)-con]ugate to. G.

(2) G satisfies the condition (K).
Remark. Corresponding theorems hold also for genera 2 and 3. How-

ever, this is not the case for genus 5 as was shown by F. Momose by con-
structing a counter-example.
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