20. On Automorphism Groups of Compact Riemann Surfaces of Genus 4

By Izumi Kuribayashi*) and Akikazu Kuribayashi**)
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1986)

Let X be a compact Riemann surface of genus $g \geqq 2$. A group $A G$ of automorphisms of X (i.e., a subgroup of the group Aut (X) of all automorphisms of X) can be represented as a subgroup $R(X, A G)$ of $G L(g, C)$ as elements of $A G$ operate in the g-dimensional module of abelian differentials on X. The purpose of this paper is to determine in case $g=4$ all subgroups of $G L(g, C)$ which are conjugate to some $R(X, A G)$ (for some X and some $A G$). (For the case $g=2,3$ the same problem was already solved; [2] for the case $g=2$; the result for $g=3$ is not yet published.)

A more detailed account will be published elsewhere.
\S 1. Preliminaries. Let G be a finite subgroup of $G L(g, C)$, and H a non-trivial cyclic subgroup of G. Define two sets $C Y(G)$ and $C Y(G ; H)$ by $C Y(G):=\{K ; K$ is a non-trivial cyclic subgroup of $G\}$,
$C Y(G ; H):=\{K \in C Y(G) ; K$ contains strictly a subgroup H of $G\}$.
We say that G satisfies the condition (F) if for every element A of $G, r(A)$: $=2-\left(\operatorname{Tr}(A)+\operatorname{Tr}\left(A^{-1}\right)\right)$ is a non-negative integer. Further we define as follows:

$$
\begin{equation*}
r(H):=2-\left(\operatorname{Tr}(A)+\operatorname{Tr}\left(A^{-1}\right)\right), \quad \text { where } H=\langle A\rangle \tag{1}
\end{equation*}
$$

(2) $\quad r_{*}(H):=r(H)-\sum_{K} r_{*}(K) \quad$ (defined by descending condition)
where K ranges over the set $C Y(G ; H)$.
(3) $l(H):=r_{*}(H) /\left[N_{G}(H): H\right], l(I):=0$, where I is the trivial group.

$$
\begin{equation*}
g_{0}(G):=(1 / \# G) \sum_{A \in G} \operatorname{Tr}(A) \tag{4}
\end{equation*}
$$

Then we have the following relation [2]:

$$
\begin{equation*}
2 g-2=\# G\left(2 g_{0}-2\right)+\# G \sum_{i} l\left(H_{i}\right)\left(1-\left(1 / n_{i}\right)\right) . \tag{RH}
\end{equation*}
$$

Here $\left\{H_{i}\right\}$ is a complete set of representatives of G-conjugacy classes of $C Y(G)$ and $n_{i}:=\# H_{i}$. We put further $\# G=n$.

We say that a finite subgroup G of $G L(g, C)$ satisfies $\left(\mathrm{RH}_{+}\right)$if G satisfies (F) and if $l(H)$ is a non-negative integer for any H of $C Y(G)$. Then put $\mathrm{RH}(G):=\left[g_{0}, n ; n_{1}, \cdots, n_{1}, \cdots, n_{s}, \cdots, n_{s}\right]$, where n_{i} appears $l\left(H_{i}\right)$-times ($1 \leqq i \leqq s$).

We say that a finite subgroup G of $G L(g, C)$ satisfies the condition (E) if the following conditions are satisfied :

[^0](i) For each element $M(\# M=n>1)$ of G there exist integers ν_{1}, \cdots, ν_{r} such that
$$
\operatorname{Tr}(M)=1+\sum_{i=1}^{r} \zeta_{n}^{\nu} / /\left(1-\zeta_{n}^{\nu_{i}}\right), \quad \zeta_{n}=\exp (2 \pi i / n)
$$
where $1 \leqq \nu_{i} \leqq n-1,\left(\nu_{i}, n\right)=1$ and $r=2-\left(\operatorname{Tr}(M)+\operatorname{Tr}\left(M^{-1}\right)\right) \geqq 0$.
(ii) For any A, B of G such that $B=A^{k}, k \mid m(k \neq m), m=\# A$, the trace formula for B does not conflict with the one for A.

We say that G satisfies the condition (K) if it satisfies $\left(\mathrm{RH}_{+}\right)$and (E). We know that $R(X, A G)$ satisfies the condition (K) [2, 3].

Notations. For the sake of simplicity we put as follows:

$$
\left.\begin{array}{l}
\bar{A}=\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \quad \bar{B}=\left[\begin{array}{rrrr}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \quad \bar{C}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right] \quad \bar{D}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\bar{E}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \quad U=\left[\begin{array}{llll}
a & b & c & d \\
b & d & a & c \\
c & a & d & b \\
d & c & b & a
\end{array}\right], \begin{array}{l}
b-c=a \\
b+c=-1 \\
b c=1 / 5 \\
d=-a
\end{array} ; D(a, b, c, d)=\left[\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & d
\end{array}\right] ; \\
L=\sqrt{2}\left[\begin{array}{lll}
\omega \zeta^{3} & \omega \zeta^{7} & 0 \\
\omega & 0 \\
\omega \zeta^{5} & \omega \zeta^{5} & 0
\end{array} 0\right. \\
0
\end{array} 0 \begin{array}{lll}
\zeta^{3} & 0 \\
0 & 0 & \zeta^{5} \\
\zeta^{7}
\end{array}\right], \quad \zeta=\zeta_{8}, \quad \omega=\zeta_{3} . \quad .
$$

§ 2. Maximal subgroups. First, we consider all possible n which satisfy $\mathrm{RH}(G)$ in §1. Next, for each possible n considered above we construct all possible groups of order n which satisfy the condition (E). Thus we have maximal subgroups of $G L(4, C)$ among them which satisfy the condition (K).
(A-1) (1) $\quad G(120)=\left\langle D\left(\zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}\right), \bar{C}, U\right\rangle, \quad \zeta=\zeta_{5}$.
(2) $G(8 \times 9)=\left\langle D\left(\omega, \omega, \omega, \omega^{2}\right), \bar{B}, \bar{D}\right\rangle, \quad \zeta=\zeta_{3}$.
(3) $\quad G(9 \times 8)=\left\langle D\left(1,1, \omega, \omega^{2}\right), \bar{E}, \bar{A}\right\rangle$.
(4) $G(4 \times 9)=\left\langle D\left(\zeta, \zeta, \zeta^{2}, \zeta^{3}\right), D\left(\omega, \omega^{2}, \omega, \omega\right), \bar{A}\right\rangle, \quad \zeta=\zeta_{6}$.
(5) $\quad G(18)=\left\langle D\left(\omega, \omega^{2}, 1,1\right), D\left(\omega, \omega, \omega, \omega^{2}\right), \bar{A}\right\rangle$.
(6) $G(2 \times 6)=\left\langle D\left(\zeta, \zeta^{5},-1,1\right), \bar{A}\right\rangle, \quad \zeta=\zeta_{6}$.
(7) $G(6 \times 2)=\left\langle D\left(\zeta, \zeta^{2}, \zeta^{4}, \zeta^{5}\right), \bar{E}\right\rangle, \quad \zeta=\zeta_{6}$.
(8) $G(2 \times 2 \times 3)=\left\langle D(-1,-1,1,-1), D(1,-1,-1,1), D\left(\omega, \omega, \omega, \omega^{2}\right)\right\rangle$.
(9) $G(8,8)=\langle D(i,-i,-1,1), \bar{A}\rangle, \quad i=\sqrt{-1}$.
(A-2) (1) $G(15)=\left\langle D\left(\zeta, \zeta^{2}, \zeta^{8}, \zeta^{11}\right)\right\rangle, \quad \zeta=\zeta_{15}$.
(2) $\quad G(12)=\left\langle D\left(\zeta, \zeta^{7}, \zeta^{2}, \zeta^{3}\right)\right\rangle, \quad \zeta=\zeta_{12}$.
(3) $G(10)=\left\langle D\left(\zeta, \zeta^{2}, \zeta^{4}, \zeta^{7}\right)\right\rangle, \quad \zeta=\zeta_{10}$.
(B) (1) $H(40)=\left\langle D\left(\zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}\right), \bar{E}\right\rangle, \quad \zeta=\zeta_{10}$.
(2) $H(32)=\left\langle D\left(\zeta, \zeta^{3}, \zeta^{5}, \zeta^{7}\right), \bar{E}\right\rangle, \quad \zeta=\zeta_{18}$.
(3) $H(24)=\langle D(i,-i, i,-i), L\rangle$.
(4) $H(18)=\left\langle D\left(\zeta, \zeta^{3}, \zeta^{5}, \zeta^{7}\right)\right\rangle, \quad \zeta=\zeta_{18}$.

All other groups are contained up to $G L(4, C)$-conjugacy in the group listed above and there are 74 groups in all (including the trivial one).

It remains to show that these groups are conjugate to some $R(X, A G)$
for some X of genus 4 and some $A G$.
§3. The expressions of curves. Let X be a non-hyperelliptic curve of genus 4. X is contained in a unique irreducible quadric surface defined by $Q=0$ and X is the complete intersection of $Q=0$ with an irreducible cubic surface defined by $F=0$ [1]. If $Q=0$ and $F=0$ are A-invariant, then A comes from an automorphism of the curve $X=\{(Q=0) \cap(F=0)\}$. The converse of this statement is true as was shown by F. Momose. Hence we can give curves for the groups in (A-1) and (A-2) by this method. However for (A-2) we can also obtain by an elementary method.
(A-1) Non-cyclic case :
(1) $Q: X_{1} X_{4}+X_{2} X_{3}=0, \quad F: X_{1}^{2} X_{3}-X_{2}^{2} X_{1}-X_{3}^{2} X_{1}+X_{4}^{2} X_{2}=0$.
(2) $Q: X_{1}^{2}+X_{2}^{2}+X_{3}^{2}=0$,
$F: X_{4}^{3}-X_{1} X_{2} X_{3}=0$.
(3) $Q: X_{1} X_{2}+X_{3} X_{4}=0$,
$F: X_{1}^{3}-X_{2}^{3}+X_{3}^{3}-X_{4}^{3}=0$.
(4) $Q: X_{3}^{2}+X_{1} X_{4}=0$,
$F: X_{1}^{3}-X_{2}^{3}+X_{4}^{3}=0$.
(5) $Q: X_{3}^{2}+X_{1} X_{2}=0$,
$F: X_{3}^{3}+X_{4}^{3}+X_{1} X_{2} X_{3}=0$.
(6) $Q: X_{3}^{2}+X_{4}^{2}+X_{1} X_{2}=0$,
$F: X_{1}^{3}-X_{2}^{3}+X_{3}^{3}+X_{4}^{2} X_{3}+c X_{1} X_{2} X_{3}=0$.
(7) $Q: X_{1} X_{2}+X_{3} X_{4}=0$,
$F: X_{1}^{3}+X_{4}^{3}+X_{2}^{2} X_{4}+X_{3}^{2} X_{1}=0$.
(8) $Q: X_{1}^{2}+X_{2}^{2}+X_{3}^{2}=0, \quad F: X_{1}^{3}+X_{4}^{3}+X_{2}^{2} X_{1}+X_{3}^{2} X_{1}=0$.
(9) $Q: X_{1}^{2}+X_{2}^{2}+X_{3} X_{4}=0, \quad F: X_{3}^{3}+X_{1}^{2} X_{4}+X_{2}^{2} X_{4}+X_{4}^{2} X_{3}+c X_{1} X_{2} X_{3}=0$.

Here c in (6) and (9) are arbitrary constants which make the equations irreducible.
(A-2) Cyclic case : We can easily obtain the equations [4].
(1) $y^{15}=x^{2}(x-1)^{3}$.
(2) $y^{12}=x(x-1)^{2}$.
(3) $y^{10}=x(x-1)^{3}$.
(B) The curves in this block are hyperelliptic [4].
(1) $y^{2}=x^{10}-1$.
(2) $y^{2}=x\left(x^{8}-1\right)$.
(3) $y^{2}=x\left(x^{4}-1\right)\left(x^{4}+2 \sqrt{-3} x^{2}+1\right)$.
(4) $y^{2}=x\left(x^{9}-1\right)$.
§4. Main Theorem. From §2 and §3 we are able to get the following

Theorem. Let G be a finite subgroup of $G L(4, C)$. Then the following two conditions are equivalent.
(1) There is a compact Riemann surface X of genus 4 and an automorphism group of X such that $R(X, A G)$ is $G L(4, C)$-conjugate to G.
(2) G satisfies the condition (K).

Remark. Corresponding theorems hold also for genera 2 and 3. However, this is not the case for genus 5 as was shown by F. Momose by constructing a counter-example.

References

[1] R. Hartshorne: Algebraic Geometry. Springer Verlag (1977).
[2] I. Kuribayashi: On an algebraization of the Riemann-Hurwitz relation. Kodai. Math., 7, 222-237 (1984).
[3] -: On automorphism groups of a curve as linear groups (to appear in J. Math. Soc. of Japan).
[4] A. Kuribayashi and I. Kuribayashi: A classification of compact Riemann surfaces of genus four. Bull. Facul. Sci. \& Eng. Chuo Univ., 26, 25-42 (1983).

[^0]: *) Institute of Mathematics, University of Tsukuba, Ibaraki 305.
 **) Department of Mathematics, Faculty of Science and Engineering, Chuo University, Tokyo 112.

